2019-07-17 07:09:53 +08:00
|
|
|
"""
|
2020-10-25 11:23:16 +08:00
|
|
|
Project Euler Problem 6: https://projecteuler.net/problem=6
|
|
|
|
|
|
|
|
Sum square difference
|
2019-07-17 07:09:53 +08:00
|
|
|
|
2019-02-14 12:08:21 +08:00
|
|
|
The sum of the squares of the first ten natural numbers is,
|
2020-10-25 11:23:16 +08:00
|
|
|
1^2 + 2^2 + ... + 10^2 = 385
|
2019-07-17 07:09:53 +08:00
|
|
|
|
2019-02-14 12:08:21 +08:00
|
|
|
The square of the sum of the first ten natural numbers is,
|
2020-10-25 11:23:16 +08:00
|
|
|
(1 + 2 + ... + 10)^2 = 55^2 = 3025
|
2019-07-17 07:09:53 +08:00
|
|
|
|
2020-10-25 11:23:16 +08:00
|
|
|
Hence the difference between the sum of the squares of the first ten
|
|
|
|
natural numbers and the square of the sum is 3025 - 385 = 2640.
|
2019-07-17 07:09:53 +08:00
|
|
|
|
2020-10-25 11:23:16 +08:00
|
|
|
Find the difference between the sum of the squares of the first one
|
|
|
|
hundred natural numbers and the square of the sum.
|
2019-07-17 07:09:53 +08:00
|
|
|
"""
|
2019-02-14 12:08:21 +08:00
|
|
|
import math
|
2019-07-17 07:09:53 +08:00
|
|
|
|
|
|
|
|
2020-10-07 12:47:43 +08:00
|
|
|
def solution(n: int = 100) -> int:
|
2020-10-25 11:23:16 +08:00
|
|
|
"""
|
|
|
|
Returns the difference between the sum of the squares of the first n
|
2019-07-17 07:09:53 +08:00
|
|
|
natural numbers and the square of the sum.
|
2019-08-19 21:37:49 +08:00
|
|
|
|
2019-07-17 07:09:53 +08:00
|
|
|
>>> solution(10)
|
|
|
|
2640
|
|
|
|
>>> solution(15)
|
|
|
|
13160
|
|
|
|
>>> solution(20)
|
|
|
|
41230
|
|
|
|
>>> solution(50)
|
|
|
|
1582700
|
|
|
|
"""
|
2020-10-25 11:23:16 +08:00
|
|
|
|
2019-07-17 07:09:53 +08:00
|
|
|
sum_of_squares = sum([i * i for i in range(1, n + 1)])
|
|
|
|
square_of_sum = int(math.pow(sum(range(1, n + 1)), 2))
|
2019-02-14 12:08:21 +08:00
|
|
|
return square_of_sum - sum_of_squares
|
|
|
|
|
2019-07-17 07:09:53 +08:00
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2020-10-25 11:23:16 +08:00
|
|
|
print(f"{solution() = }")
|