mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
527 lines
19 KiB
Python
527 lines
19 KiB
Python
|
# coding: utf-8
|
||
|
"""
|
||
|
Implementation of sequential minimal optimization(SMO) for support vector machines(SVM).
|
||
|
|
||
|
Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem
|
||
|
that arises during the training of support vector machines.
|
||
|
It was invented by John Platt in 1998.
|
||
|
|
||
|
Input:
|
||
|
0: type: numpy.ndarray.
|
||
|
1: first column of ndarray must be tags of samples, must be 1 or -1.
|
||
|
2: rows of ndarray represent samples.
|
||
|
|
||
|
Usage:
|
||
|
Command:
|
||
|
python3 sequential_minimum_optimization.py
|
||
|
Code:
|
||
|
from sequential_minimum_optimization import SmoSVM, Kernel
|
||
|
|
||
|
kernel = Kernel(kernel='poly', degree=3., coef0=1., gamma=0.5)
|
||
|
init_alphas = np.zeros(train.shape[0])
|
||
|
SVM = SmoSVM(train=train, alpha_list=init_alphas, kernel_func=kernel, cost=0.4, b=0.0, tolerance=0.001)
|
||
|
SVM.fit()
|
||
|
predict = SVM.predict(test_samples)
|
||
|
|
||
|
Reference:
|
||
|
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/smo-book.pdf
|
||
|
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf
|
||
|
http://web.cs.iastate.edu/~honavar/smo-svm.pdf
|
||
|
"""
|
||
|
|
||
|
from __future__ import division
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
import urllib.request
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
from sklearn.datasets import make_blobs, make_circles
|
||
|
from sklearn.preprocessing import StandardScaler
|
||
|
|
||
|
CANCER_DATASET_URL = 'http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data'
|
||
|
|
||
|
|
||
|
class SmoSVM(object):
|
||
|
def __init__(self, train, kernel_func, alpha_list=None, cost=0.4, b=0.0, tolerance=0.001, auto_norm=True):
|
||
|
self._init = True
|
||
|
self._auto_norm = auto_norm
|
||
|
self._c = np.float64(cost)
|
||
|
self._b = np.float64(b)
|
||
|
self._tol = np.float64(tolerance) if tolerance > 0.0001 else np.float64(0.001)
|
||
|
|
||
|
self.tags = train[:, 0]
|
||
|
self.samples = self._norm(train[:, 1:]) if self._auto_norm else train[:, 1:]
|
||
|
self.alphas = alpha_list if alpha_list is not None else np.zeros(train.shape[0])
|
||
|
self.Kernel = kernel_func
|
||
|
|
||
|
self._eps = 0.001
|
||
|
self._all_samples = list(range(self.length))
|
||
|
self._K_matrix = self._calculate_k_matrix()
|
||
|
self._error = np.zeros(self.length)
|
||
|
self._unbound = []
|
||
|
|
||
|
self.choose_alpha = self._choose_alphas()
|
||
|
|
||
|
# Calculate alphas using SMO algorithsm
|
||
|
def fit(self):
|
||
|
K = self._k
|
||
|
state = None
|
||
|
while True:
|
||
|
|
||
|
# 1: Find alpha1, alpha2
|
||
|
try:
|
||
|
i1, i2 = self.choose_alpha.send(state)
|
||
|
state = None
|
||
|
except StopIteration:
|
||
|
print("Optimization done!\r\nEvery sample satisfy the KKT condition!")
|
||
|
break
|
||
|
|
||
|
# 2: calculate new alpha2 and new alpha1
|
||
|
y1, y2 = self.tags[i1], self.tags[i2]
|
||
|
a1, a2 = self.alphas[i1].copy(), self.alphas[i2].copy()
|
||
|
e1, e2 = self._e(i1), self._e(i2)
|
||
|
args = (i1, i2, a1, a2, e1, e2, y1, y2)
|
||
|
a1_new, a2_new = self._get_new_alpha(*args)
|
||
|
if not a1_new and not a2_new:
|
||
|
state = False
|
||
|
continue
|
||
|
self.alphas[i1], self.alphas[i2] = a1_new, a2_new
|
||
|
|
||
|
# 3: update threshold(b)
|
||
|
b1_new = np.float64(-e1 - y1 * K(i1, i1) * (a1_new - a1) - y2 * K(i2, i1) * (a2_new - a2) + self._b)
|
||
|
b2_new = np.float64(-e2 - y2 * K(i2, i2) * (a2_new - a2) - y1 * K(i1, i2) * (a1_new - a1) + self._b)
|
||
|
if 0.0 < a1_new < self._c:
|
||
|
b = b1_new
|
||
|
if 0.0 < a2_new < self._c:
|
||
|
b = b2_new
|
||
|
if not (np.float64(0) < a2_new < self._c) and not (np.float64(0) < a1_new < self._c):
|
||
|
b = (b1_new + b2_new) / 2.0
|
||
|
b_old = self._b
|
||
|
self._b = b
|
||
|
|
||
|
# 4: update error value,here we only calculate those non-bound samples' error
|
||
|
self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
|
||
|
for s in self.unbound:
|
||
|
if s == i1 or s == i2:
|
||
|
continue
|
||
|
self._error[s] += y1 * (a1_new - a1) * K(i1, s) + y2 * (a2_new - a2) * K(i2, s) + (self._b - b_old)
|
||
|
|
||
|
# if i1 or i2 is non-bound,update there error value to zero
|
||
|
if self._is_unbound(i1):
|
||
|
self._error[i1] = 0
|
||
|
if self._is_unbound(i2):
|
||
|
self._error[i2] = 0
|
||
|
|
||
|
# Predict test samles
|
||
|
def predict(self, test_samples, classify=True):
|
||
|
|
||
|
if test_samples.shape[1] > self.samples.shape[1]:
|
||
|
raise ValueError("Test samples' feature length does not equal to that of train samples")
|
||
|
|
||
|
if self._auto_norm:
|
||
|
test_samples = self._norm(test_samples)
|
||
|
|
||
|
results = []
|
||
|
for test_sample in test_samples:
|
||
|
result = self._predict(test_sample)
|
||
|
if classify:
|
||
|
results.append(1 if result > 0 else -1)
|
||
|
else:
|
||
|
results.append(result)
|
||
|
return np.array(results)
|
||
|
|
||
|
# Check if alpha violate KKT condition
|
||
|
def _check_obey_kkt(self, index):
|
||
|
alphas = self.alphas
|
||
|
tol = self._tol
|
||
|
r = self._e(index) * self.tags[index]
|
||
|
c = self._c
|
||
|
|
||
|
return (r < -tol and alphas[index] < c) or (r > tol and alphas[index] > 0.0)
|
||
|
|
||
|
# Get value calculated from kernel function
|
||
|
def _k(self, i1, i2):
|
||
|
# for test samples,use Kernel function
|
||
|
if isinstance(i2, np.ndarray):
|
||
|
return self.Kernel(self.samples[i1], i2)
|
||
|
# for train samples,Kernel values have been saved in matrix
|
||
|
else:
|
||
|
return self._K_matrix[i1, i2]
|
||
|
|
||
|
# Get sample's error
|
||
|
def _e(self, index):
|
||
|
"""
|
||
|
Two cases:
|
||
|
1:Sample[index] is non-bound,Fetch error from list: _error
|
||
|
2:sample[index] is bound,Use predicted value deduct true value: g(xi) - yi
|
||
|
|
||
|
"""
|
||
|
# get from error data
|
||
|
if self._is_unbound(index):
|
||
|
return self._error[index]
|
||
|
# get by g(xi) - yi
|
||
|
else:
|
||
|
gx = np.dot(self.alphas * self.tags, self._K_matrix[:, index]) + self._b
|
||
|
yi = self.tags[index]
|
||
|
return gx - yi
|
||
|
|
||
|
# Calculate Kernel matrix of all possible i1,i2 ,saving time
|
||
|
def _calculate_k_matrix(self):
|
||
|
k_matrix = np.zeros([self.length, self.length])
|
||
|
for i in self._all_samples:
|
||
|
for j in self._all_samples:
|
||
|
k_matrix[i, j] = np.float64(self.Kernel(self.samples[i, :], self.samples[j, :]))
|
||
|
return k_matrix
|
||
|
|
||
|
# Predict test sample's tag
|
||
|
def _predict(self, sample):
|
||
|
k = self._k
|
||
|
predicted_value = np.sum(
|
||
|
[self.alphas[i1] * self.tags[i1] * k(i1, sample) for i1 in self._all_samples]) + self._b
|
||
|
return predicted_value
|
||
|
|
||
|
# Choose alpha1 and alpha2
|
||
|
def _choose_alphas(self):
|
||
|
locis = yield from self._choose_a1()
|
||
|
if not locis:
|
||
|
return
|
||
|
return locis
|
||
|
|
||
|
def _choose_a1(self):
|
||
|
"""
|
||
|
Choose first alpha ;steps:
|
||
|
1:Fisrt loop over all sample
|
||
|
2:Second loop over all non-bound samples till all non-bound samples does not voilate kkt condition.
|
||
|
3:Repeat this two process endlessly,till all samples does not voilate kkt condition samples after first loop.
|
||
|
"""
|
||
|
while True:
|
||
|
all_not_obey = True
|
||
|
# all sample
|
||
|
print('scanning all sample!')
|
||
|
for i1 in [i for i in self._all_samples if self._check_obey_kkt(i)]:
|
||
|
all_not_obey = False
|
||
|
yield from self._choose_a2(i1)
|
||
|
|
||
|
# non-bound sample
|
||
|
print('scanning non-bound sample!')
|
||
|
while True:
|
||
|
not_obey = True
|
||
|
for i1 in [i for i in self._all_samples if self._check_obey_kkt(i) and self._is_unbound(i)]:
|
||
|
not_obey = False
|
||
|
yield from self._choose_a2(i1)
|
||
|
if not_obey:
|
||
|
print('all non-bound samples fit the KKT condition!')
|
||
|
break
|
||
|
if all_not_obey:
|
||
|
print('all samples fit the KKT condition! Optimization done!')
|
||
|
break
|
||
|
return False
|
||
|
|
||
|
def _choose_a2(self, i1):
|
||
|
"""
|
||
|
Choose the second alpha by using heuristic algorithm ;steps:
|
||
|
1:Choosed alpha2 which get the maximum step size (|E1 - E2|).
|
||
|
2:Start in a random point,loop over all non-bound samples till alpha1 and alpha2 are optimized.
|
||
|
3:Start in a random point,loop over all samples till alpha1 and alpha2 are optimized.
|
||
|
"""
|
||
|
self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
|
||
|
|
||
|
if len(self.unbound) > 0:
|
||
|
tmp_error = self._error.copy().tolist()
|
||
|
tmp_error_dict = {index: value for index, value in enumerate(tmp_error) if self._is_unbound(index)}
|
||
|
if self._e(i1) >= 0:
|
||
|
i2 = min(tmp_error_dict, key=lambda index: tmp_error_dict[index])
|
||
|
else:
|
||
|
i2 = max(tmp_error_dict, key=lambda index: tmp_error_dict[index])
|
||
|
cmd = yield i1, i2
|
||
|
if cmd is None:
|
||
|
return
|
||
|
|
||
|
for i2 in np.roll(self.unbound, np.random.choice(self.length)):
|
||
|
cmd = yield i1, i2
|
||
|
if cmd is None:
|
||
|
return
|
||
|
|
||
|
for i2 in np.roll(self._all_samples, np.random.choice(self.length)):
|
||
|
cmd = yield i1, i2
|
||
|
if cmd is None:
|
||
|
return
|
||
|
|
||
|
# Get the new alpha2 and new alpha1
|
||
|
def _get_new_alpha(self, i1, i2, a1, a2, e1, e2, y1, y2):
|
||
|
K = self._k
|
||
|
if i1 == i2:
|
||
|
return None, None
|
||
|
|
||
|
# calculate L and H which bound the new alpha2
|
||
|
s = y1 * y2
|
||
|
if s == -1:
|
||
|
L, H = max(0.0, a2 - a1), min(self._c, self._c + a2 - a1)
|
||
|
else:
|
||
|
L, H = max(0.0, a2 + a1 - self._c), min(self._c, a2 + a1)
|
||
|
if L == H:
|
||
|
return None, None
|
||
|
|
||
|
# calculate eta
|
||
|
k11 = K(i1, i1)
|
||
|
k22 = K(i2, i2)
|
||
|
k12 = K(i1, i2)
|
||
|
eta = k11 + k22 - 2.0 * k12
|
||
|
|
||
|
# select the new alpha2 which could get the minimal objectives
|
||
|
if eta > 0.0:
|
||
|
a2_new_unc = a2 + (y2 * (e1 - e2)) / eta
|
||
|
# a2_new has a boundry
|
||
|
if a2_new_unc >= H:
|
||
|
a2_new = H
|
||
|
elif a2_new_unc <= L:
|
||
|
a2_new = L
|
||
|
else:
|
||
|
a2_new = a2_new_unc
|
||
|
else:
|
||
|
b = self._b
|
||
|
l1 = a1 + s * (a2 - L)
|
||
|
h1 = a1 + s * (a2 - H)
|
||
|
|
||
|
# way 1
|
||
|
f1 = y1 * (e1 + b) - a1 * K(i1, i1) - s * a2 * K(i1, i2)
|
||
|
f2 = y2 * (e2 + b) - a2 * K(i2, i2) - s * a1 * K(i1, i2)
|
||
|
ol = l1 * f1 + L * f2 + 1 / 2 * l1 ** 2 * K(i1, i1) + 1 / 2 * L ** 2 * K(i2, i2) + s * L * l1 * K(i1, i2)
|
||
|
oh = h1 * f1 + H * f2 + 1 / 2 * h1 ** 2 * K(i1, i1) + 1 / 2 * H ** 2 * K(i2, i2) + s * H * h1 * K(i1, i2)
|
||
|
"""
|
||
|
# way 2
|
||
|
Use objective function check which alpha2 new could get the minimal objectives
|
||
|
|
||
|
"""
|
||
|
if ol < (oh - self._eps):
|
||
|
a2_new = L
|
||
|
elif ol > oh + self._eps:
|
||
|
a2_new = H
|
||
|
else:
|
||
|
a2_new = a2
|
||
|
|
||
|
# a1_new has a boundry too
|
||
|
a1_new = a1 + s * (a2 - a2_new)
|
||
|
if a1_new < 0:
|
||
|
a2_new += s * a1_new
|
||
|
a1_new = 0
|
||
|
if a1_new > self._c:
|
||
|
a2_new += s * (a1_new - self._c)
|
||
|
a1_new = self._c
|
||
|
|
||
|
return a1_new, a2_new
|
||
|
|
||
|
# Normalise data using min_max way
|
||
|
def _norm(self, data):
|
||
|
if self._init:
|
||
|
self._min = np.min(data, axis=0)
|
||
|
self._max = np.max(data, axis=0)
|
||
|
self._init = False
|
||
|
return (data - self._min) / (self._max - self._min)
|
||
|
else:
|
||
|
return (data - self._min) / (self._max - self._min)
|
||
|
|
||
|
def _is_unbound(self, index):
|
||
|
if 0.0 < self.alphas[index] < self._c:
|
||
|
return True
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
def _is_support(self, index):
|
||
|
if self.alphas[index] > 0:
|
||
|
return True
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
@property
|
||
|
def unbound(self):
|
||
|
return self._unbound
|
||
|
|
||
|
@property
|
||
|
def support(self):
|
||
|
return [i for i in range(self.length) if self._is_support(i)]
|
||
|
|
||
|
@property
|
||
|
def length(self):
|
||
|
return self.samples.shape[0]
|
||
|
|
||
|
|
||
|
class Kernel(object):
|
||
|
def __init__(self, kernel, degree=1.0, coef0=0.0, gamma=1.0):
|
||
|
self.degree = np.float64(degree)
|
||
|
self.coef0 = np.float64(coef0)
|
||
|
self.gamma = np.float64(gamma)
|
||
|
self._kernel_name = kernel
|
||
|
self._kernel = self._get_kernel(kernel_name=kernel)
|
||
|
self._check()
|
||
|
|
||
|
def _polynomial(self, v1, v2):
|
||
|
return (self.gamma * np.inner(v1, v2) + self.coef0) ** self.degree
|
||
|
|
||
|
def _linear(self, v1, v2):
|
||
|
return np.inner(v1, v2) + self.coef0
|
||
|
|
||
|
def _rbf(self, v1, v2):
|
||
|
return np.exp(-1 * (self.gamma * np.linalg.norm(v1 - v2) ** 2))
|
||
|
|
||
|
def _check(self):
|
||
|
if self._kernel == self._rbf:
|
||
|
if self.gamma < 0:
|
||
|
raise ValueError('gamma value must greater than 0')
|
||
|
|
||
|
def _get_kernel(self, kernel_name):
|
||
|
maps = {
|
||
|
'linear': self._linear,
|
||
|
'poly': self._polynomial,
|
||
|
'rbf': self._rbf
|
||
|
}
|
||
|
return maps[kernel_name]
|
||
|
|
||
|
def __call__(self, v1, v2):
|
||
|
return self._kernel(v1, v2)
|
||
|
|
||
|
def __repr__(self):
|
||
|
return self._kernel_name
|
||
|
|
||
|
|
||
|
def count_time(func):
|
||
|
def call_func(*args, **kwargs):
|
||
|
import time
|
||
|
start_time = time.time()
|
||
|
func(*args, **kwargs)
|
||
|
end_time = time.time()
|
||
|
print('smo algorithm cost {} seconds'.format(end_time - start_time))
|
||
|
|
||
|
return call_func
|
||
|
|
||
|
|
||
|
@count_time
|
||
|
def test_cancel_data():
|
||
|
print('Hello!\r\nStart test svm by smo algorithm!')
|
||
|
# 0: download dataset and load into pandas' dataframe
|
||
|
if not os.path.exists(r'cancel_data.csv'):
|
||
|
request = urllib.request.Request(
|
||
|
CANCER_DATASET_URL,
|
||
|
headers={'User-Agent': 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'}
|
||
|
)
|
||
|
response = urllib.request.urlopen(request)
|
||
|
content = response.read().decode('utf-8')
|
||
|
with open(r'cancel_data.csv', 'w') as f:
|
||
|
f.write(content)
|
||
|
|
||
|
data = pd.read_csv(r'cancel_data.csv', header=None)
|
||
|
|
||
|
# 1: pre-processing data
|
||
|
del data[data.columns.tolist()[0]]
|
||
|
data = data.dropna(axis=0)
|
||
|
data = data.replace({'M': np.float64(1), 'B': np.float64(-1)})
|
||
|
samples = np.array(data)[:, :]
|
||
|
|
||
|
# 2: deviding data into train_data data and test_data data
|
||
|
train_data, test_data = samples[:328, :], samples[328:, :]
|
||
|
test_tags, test_samples = test_data[:, 0], test_data[:, 1:]
|
||
|
|
||
|
# 3: choose kernel function,and set initial alphas to zero(optional)
|
||
|
mykernel = Kernel(kernel='rbf', degree=5, coef0=1, gamma=0.5)
|
||
|
al = np.zeros(train_data.shape[0])
|
||
|
|
||
|
# 4: calculating best alphas using SMO algorithm and predict test_data samples
|
||
|
mysvm = SmoSVM(train=train_data, kernel_func=mykernel, alpha_list=al, cost=0.4, b=0.0, tolerance=0.001)
|
||
|
mysvm.fit()
|
||
|
predict = mysvm.predict(test_samples)
|
||
|
|
||
|
# 5: check accuracy
|
||
|
score = 0
|
||
|
test_num = test_tags.shape[0]
|
||
|
for i in range(test_tags.shape[0]):
|
||
|
if test_tags[i] == predict[i]:
|
||
|
score += 1
|
||
|
print('\r\nall: {}\r\nright: {}\r\nfalse: {}'.format(test_num, score, test_num - score))
|
||
|
print("Rough Accuracy: {}".format(score / test_tags.shape[0]))
|
||
|
|
||
|
|
||
|
def test_demonstration():
|
||
|
# change stdout
|
||
|
print('\r\nStart plot,please wait!!!')
|
||
|
sys.stdout = open(os.devnull, 'w')
|
||
|
|
||
|
ax1 = plt.subplot2grid((2, 2), (0, 0))
|
||
|
ax2 = plt.subplot2grid((2, 2), (0, 1))
|
||
|
ax3 = plt.subplot2grid((2, 2), (1, 0))
|
||
|
ax4 = plt.subplot2grid((2, 2), (1, 1))
|
||
|
ax1.set_title("linear svm,cost:0.1")
|
||
|
test_linear_kernel(ax1, cost=0.1)
|
||
|
ax2.set_title("linear svm,cost:500")
|
||
|
test_linear_kernel(ax2, cost=500)
|
||
|
ax3.set_title("rbf kernel svm,cost:0.1")
|
||
|
test_rbf_kernel(ax3, cost=0.1)
|
||
|
ax4.set_title("rbf kernel svm,cost:500")
|
||
|
test_rbf_kernel(ax4, cost=500)
|
||
|
|
||
|
sys.stdout = sys.__stdout__
|
||
|
print("Plot done!!!")
|
||
|
|
||
|
def test_linear_kernel(ax, cost):
|
||
|
train_x, train_y = make_blobs(n_samples=500, centers=2,
|
||
|
n_features=2, random_state=1)
|
||
|
train_y[train_y == 0] = -1
|
||
|
scaler = StandardScaler()
|
||
|
train_x_scaled = scaler.fit_transform(train_x, train_y)
|
||
|
train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
|
||
|
mykernel = Kernel(kernel='linear', degree=5, coef0=1, gamma=0.5)
|
||
|
mysvm = SmoSVM(train=train_data, kernel_func=mykernel, cost=cost, tolerance=0.001, auto_norm=False)
|
||
|
mysvm.fit()
|
||
|
plot_partition_boundary(mysvm, train_data, ax=ax)
|
||
|
|
||
|
|
||
|
def test_rbf_kernel(ax, cost):
|
||
|
train_x, train_y = make_circles(n_samples=500, noise=0.1, factor=0.1, random_state=1)
|
||
|
train_y[train_y == 0] = -1
|
||
|
scaler = StandardScaler()
|
||
|
train_x_scaled = scaler.fit_transform(train_x, train_y)
|
||
|
train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
|
||
|
mykernel = Kernel(kernel='rbf', degree=5, coef0=1, gamma=0.5)
|
||
|
mysvm = SmoSVM(train=train_data, kernel_func=mykernel, cost=cost, tolerance=0.001, auto_norm=False)
|
||
|
mysvm.fit()
|
||
|
plot_partition_boundary(mysvm, train_data, ax=ax)
|
||
|
|
||
|
|
||
|
def plot_partition_boundary(model, train_data, ax, resolution=100, colors=('b', 'k', 'r')):
|
||
|
"""
|
||
|
We can not get the optimum w of our kernel svm model which is different from linear svm.
|
||
|
For this reason, we generate randomly destributed points with high desity and prediced values of these points are
|
||
|
calculated by using our tained model. Then we could use this prediced values to draw contour map.
|
||
|
And this contour map can represent svm's partition boundary.
|
||
|
|
||
|
"""
|
||
|
train_data_x = train_data[:, 1]
|
||
|
train_data_y = train_data[:, 2]
|
||
|
train_data_tags = train_data[:, 0]
|
||
|
xrange = np.linspace(train_data_x.min(), train_data_x.max(), resolution)
|
||
|
yrange = np.linspace(train_data_y.min(), train_data_y.max(), resolution)
|
||
|
test_samples = np.array([(x, y) for x in xrange for y in yrange]).reshape(resolution * resolution, 2)
|
||
|
|
||
|
test_tags = model.predict(test_samples, classify=False)
|
||
|
grid = test_tags.reshape((len(xrange), len(yrange)))
|
||
|
|
||
|
# Plot contour map which represents the partition boundary
|
||
|
ax.contour(xrange, yrange, np.mat(grid).T, levels=(-1, 0, 1), linestyles=('--', '-', '--'),
|
||
|
linewidths=(1, 1, 1),
|
||
|
colors=colors)
|
||
|
# Plot all train samples
|
||
|
ax.scatter(train_data_x, train_data_y, c=train_data_tags, cmap=plt.cm.Dark2, lw=0, alpha=0.5)
|
||
|
|
||
|
# Plot support vectors
|
||
|
support = model.support
|
||
|
ax.scatter(train_data_x[support], train_data_y[support], c=train_data_tags[support], cmap=plt.cm.Dark2)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_cancel_data()
|
||
|
test_demonstration()
|
||
|
plt.show()
|
||
|
|