2019-10-30 07:26:28 +08:00
|
|
|
import statistics
|
|
|
|
|
|
|
|
|
|
|
|
def mode(input_list): # Defining function "mode."
|
|
|
|
"""This function returns the mode(Mode as in the measures of
|
|
|
|
central tendency) of the input data.
|
|
|
|
|
|
|
|
The input list may contain any Datastructure or any Datatype.
|
|
|
|
|
|
|
|
>>> input_list = [2, 3, 4, 5, 3, 4, 2, 5, 2, 2, 4, 2, 2, 2]
|
|
|
|
>>> mode(input_list)
|
|
|
|
2
|
|
|
|
>>> input_list = [2, 3, 4, 5, 3, 4, 2, 5, 2, 2, 4, 2, 2, 2]
|
|
|
|
>>> mode(input_list) == statistics.mode(input_list)
|
|
|
|
True
|
|
|
|
"""
|
2020-03-04 20:40:28 +08:00
|
|
|
# Copying input_list to check with the index number later.
|
2019-10-30 07:26:28 +08:00
|
|
|
check_list = input_list.copy()
|
|
|
|
result = list() # Empty list to store the counts of elements in input_list
|
|
|
|
for x in input_list:
|
|
|
|
result.append(input_list.count(x))
|
|
|
|
input_list.remove(x)
|
|
|
|
y = max(result) # Gets the maximum value in the result list.
|
|
|
|
# Returns the value with the maximum number of repetitions.
|
|
|
|
return check_list[result.index(y)]
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
data = [2, 3, 4, 5, 3, 4, 2, 5, 2, 2, 4, 2, 2, 2]
|
|
|
|
print(mode(data))
|
|
|
|
print(statistics.mode(data))
|