mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
60 lines
1.5 KiB
Python
60 lines
1.5 KiB
Python
|
#!/usr/bin/env python3
|
||
|
"""
|
||
|
Build a half-adder quantum circuit that takes two bits as input,
|
||
|
encodes them into qubits, then runs the half-adder circuit calculating
|
||
|
the sum and carry qubits, observed over 1000 runs of the experiment
|
||
|
.
|
||
|
|
||
|
References:
|
||
|
- https://en.wikipedia.org/wiki/Adder_(electronics)
|
||
|
- https://qiskit.org/textbook/ch-states/atoms-computation.html#4.2-Remembering-how-to-add-
|
||
|
"""
|
||
|
|
||
|
import qiskit as q
|
||
|
|
||
|
|
||
|
def half_adder(bit0: int, bit1: int) -> q.result.counts.Counts:
|
||
|
"""
|
||
|
>>> half_adder(0, 0)
|
||
|
{'00': 1000}
|
||
|
>>> half_adder(0, 1)
|
||
|
{'01': 1000}
|
||
|
>>> half_adder(1, 0)
|
||
|
{'01': 1000}
|
||
|
>>> half_adder(1, 1)
|
||
|
{'10': 1000}
|
||
|
"""
|
||
|
# Use Aer's qasm_simulator
|
||
|
simulator = q.Aer.get_backend("qasm_simulator")
|
||
|
|
||
|
qc_ha = q.QuantumCircuit(4, 2)
|
||
|
# encode inputs in qubits 0 and 1
|
||
|
if bit0 == 1:
|
||
|
qc_ha.x(0)
|
||
|
if bit1 == 1:
|
||
|
qc_ha.x(1)
|
||
|
qc_ha.barrier()
|
||
|
|
||
|
# use cnots to write XOR of the inputs on qubit2
|
||
|
qc_ha.cx(0, 2)
|
||
|
qc_ha.cx(1, 2)
|
||
|
|
||
|
# use ccx / toffoli gate to write AND of the inputs on qubit3
|
||
|
qc_ha.ccx(0, 1, 3)
|
||
|
qc_ha.barrier()
|
||
|
|
||
|
# extract outputs
|
||
|
qc_ha.measure(2, 0) # extract XOR value
|
||
|
qc_ha.measure(3, 1) # extract AND value
|
||
|
|
||
|
# Execute the circuit on the qasm simulator
|
||
|
job = q.execute(qc_ha, simulator, shots=1000)
|
||
|
|
||
|
# Return the histogram data of the results of the experiment.
|
||
|
return job.result().get_counts(qc_ha)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
counts = half_adder(1, 1)
|
||
|
print(f"Half Adder Output Qubit Counts: {counts}")
|