TheAlgorithms-Python/dynamic_programming/matrix_chain_order.py

55 lines
1.5 KiB
Python
Raw Normal View History

2018-02-26 19:55:09 +08:00
import sys
2019-10-05 13:14:13 +08:00
"""
2018-02-26 19:55:09 +08:00
Dynamic Programming
Implementation of Matrix Chain Multiplication
Time Complexity: O(n^3)
Space Complexity: O(n^2)
2019-10-05 13:14:13 +08:00
"""
def matrix_chain_order(array):
n = len(array)
matrix = [[0 for x in range(n)] for x in range(n)]
sol = [[0 for x in range(n)] for x in range(n)]
2018-02-26 19:55:09 +08:00
for chain_length in range(2, n):
for a in range(1, n - chain_length + 1):
b = a + chain_length - 1
2018-02-26 19:55:09 +08:00
matrix[a][b] = sys.maxsize
2019-10-05 13:14:13 +08:00
for c in range(a, b):
cost = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
2019-10-05 13:14:13 +08:00
)
if cost < matrix[a][b]:
matrix[a][b] = cost
sol[a][b] = c
return matrix, sol
2019-10-05 13:14:13 +08:00
# Print order of matrix with Ai as Matrix
def print_optiomal_solution(optimal_solution, i, j):
2019-10-05 13:14:13 +08:00
if i == j:
print("A" + str(i), end=" ")
2018-02-26 19:55:09 +08:00
else:
2019-10-05 13:14:13 +08:00
print("(", end=" ")
print_optiomal_solution(optimal_solution, i, optimal_solution[i][j])
print_optiomal_solution(optimal_solution, optimal_solution[i][j] + 1, j)
2019-10-05 13:14:13 +08:00
print(")", end=" ")
2018-02-26 19:55:09 +08:00
def main():
2019-10-05 13:14:13 +08:00
array = [30, 35, 15, 5, 10, 20, 25]
n = len(array)
# Size of matrix created from above array will be
2018-02-26 19:55:09 +08:00
# 30*35 35*15 15*5 5*10 10*20 20*25
matrix, optimal_solution = matrix_chain_order(array)
2019-10-05 13:14:13 +08:00
print("No. of Operation required: " + str(matrix[1][n - 1]))
print_optiomal_solution(optimal_solution, 1, n - 1)
2019-10-05 13:14:13 +08:00
2018-02-26 19:55:09 +08:00
2019-10-05 13:14:13 +08:00
if __name__ == "__main__":
2018-02-26 19:55:09 +08:00
main()