2019-07-17 07:09:53 +08:00
|
|
|
"""
|
2020-10-06 20:18:07 +08:00
|
|
|
https://projecteuler.net/problem=10
|
|
|
|
|
2019-07-17 07:09:53 +08:00
|
|
|
Problem Statement:
|
|
|
|
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
|
|
|
|
|
|
|
|
Find the sum of all the primes below two million.
|
|
|
|
"""
|
|
|
|
import math
|
|
|
|
from itertools import takewhile
|
2020-10-06 20:18:07 +08:00
|
|
|
from typing import Iterator
|
|
|
|
|
|
|
|
|
|
|
|
def is_prime(number: int) -> bool:
|
|
|
|
"""Returns boolean representing primality of given number num.
|
|
|
|
>>> is_prime(2)
|
|
|
|
True
|
|
|
|
>>> is_prime(3)
|
|
|
|
True
|
|
|
|
>>> is_prime(27)
|
|
|
|
False
|
|
|
|
>>> is_prime(2999)
|
|
|
|
True
|
|
|
|
"""
|
2018-12-06 23:19:28 +08:00
|
|
|
if number % 2 == 0 and number > 2:
|
|
|
|
return False
|
|
|
|
return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2))
|
2019-07-17 07:09:53 +08:00
|
|
|
|
|
|
|
|
2020-10-06 20:18:07 +08:00
|
|
|
def prime_generator() -> Iterator[int]:
|
2018-12-06 23:19:28 +08:00
|
|
|
num = 2
|
|
|
|
while True:
|
2020-10-06 20:18:07 +08:00
|
|
|
if is_prime(num):
|
2018-12-06 23:19:28 +08:00
|
|
|
yield num
|
2019-07-17 07:09:53 +08:00
|
|
|
num += 1
|
|
|
|
|
|
|
|
|
2020-10-06 20:18:07 +08:00
|
|
|
def solution(n: int = 2000000) -> int:
|
2019-07-17 07:09:53 +08:00
|
|
|
"""Returns the sum of all the primes below n.
|
2019-08-19 21:37:49 +08:00
|
|
|
|
2019-07-19 06:34:29 +08:00
|
|
|
# The code below has been commented due to slow execution affecting Travis.
|
|
|
|
# >>> solution(2000000)
|
|
|
|
# 142913828922
|
2019-07-17 07:09:53 +08:00
|
|
|
>>> solution(1000)
|
|
|
|
76127
|
|
|
|
>>> solution(5000)
|
|
|
|
1548136
|
|
|
|
>>> solution(10000)
|
|
|
|
5736396
|
|
|
|
>>> solution(7)
|
|
|
|
10
|
|
|
|
"""
|
|
|
|
return sum(takewhile(lambda x: x < n, prime_generator()))
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2019-08-19 21:37:49 +08:00
|
|
|
print(solution(int(input().strip())))
|