mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
214 lines
7.6 KiB
Python
214 lines
7.6 KiB
Python
|
"""
|
|||
|
Polynomial regression is a type of regression analysis that models the relationship
|
|||
|
between a predictor x and the response y as an mth-degree polynomial:
|
|||
|
|
|||
|
y = β₀ + β₁x + β₂x² + ... + βₘxᵐ + ε
|
|||
|
|
|||
|
By treating x, x², ..., xᵐ as distinct variables, we see that polynomial regression is a
|
|||
|
special case of multiple linear regression. Therefore, we can use ordinary least squares
|
|||
|
(OLS) estimation to estimate the vector of model parameters β = (β₀, β₁, β₂, ..., βₘ)
|
|||
|
for polynomial regression:
|
|||
|
|
|||
|
β = (XᵀX)⁻¹Xᵀy = X⁺y
|
|||
|
|
|||
|
where X is the design matrix, y is the response vector, and X⁺ denotes the Moore–Penrose
|
|||
|
pseudoinverse of X. In the case of polynomial regression, the design matrix is
|
|||
|
|
|||
|
|1 x₁ x₁² ⋯ x₁ᵐ|
|
|||
|
X = |1 x₂ x₂² ⋯ x₂ᵐ|
|
|||
|
|⋮ ⋮ ⋮ ⋱ ⋮ |
|
|||
|
|1 xₙ xₙ² ⋯ xₙᵐ|
|
|||
|
|
|||
|
In OLS estimation, inverting XᵀX to compute X⁺ can be very numerically unstable. This
|
|||
|
implementation sidesteps this need to invert XᵀX by computing X⁺ using singular value
|
|||
|
decomposition (SVD):
|
|||
|
|
|||
|
β = VΣ⁺Uᵀy
|
|||
|
|
|||
|
where UΣVᵀ is an SVD of X.
|
|||
|
|
|||
|
References:
|
|||
|
- https://en.wikipedia.org/wiki/Polynomial_regression
|
|||
|
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
|
|||
|
- https://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
|
|||
|
- https://en.wikipedia.org/wiki/Singular_value_decomposition
|
|||
|
"""
|
|||
|
|
|||
|
import matplotlib.pyplot as plt
|
|||
|
import numpy as np
|
|||
|
|
|||
|
|
|||
|
class PolynomialRegression:
|
|||
|
__slots__ = "degree", "params"
|
|||
|
|
|||
|
def __init__(self, degree: int) -> None:
|
|||
|
"""
|
|||
|
@raises ValueError: if the polynomial degree is negative
|
|||
|
"""
|
|||
|
if degree < 0:
|
|||
|
raise ValueError("Polynomial degree must be non-negative")
|
|||
|
|
|||
|
self.degree = degree
|
|||
|
self.params = None
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def _design_matrix(data: np.ndarray, degree: int) -> np.ndarray:
|
|||
|
"""
|
|||
|
Constructs a polynomial regression design matrix for the given input data. For
|
|||
|
input data x = (x₁, x₂, ..., xₙ) and polynomial degree m, the design matrix is
|
|||
|
the Vandermonde matrix
|
|||
|
|
|||
|
|1 x₁ x₁² ⋯ x₁ᵐ|
|
|||
|
X = |1 x₂ x₂² ⋯ x₂ᵐ|
|
|||
|
|⋮ ⋮ ⋮ ⋱ ⋮ |
|
|||
|
|1 xₙ xₙ² ⋯ xₙᵐ|
|
|||
|
|
|||
|
Reference: https://en.wikipedia.org/wiki/Vandermonde_matrix
|
|||
|
|
|||
|
@param data: the input predictor values x, either for model fitting or for
|
|||
|
prediction
|
|||
|
@param degree: the polynomial degree m
|
|||
|
@returns: the Vandermonde matrix X (see above)
|
|||
|
@raises ValueError: if input data is not N x 1
|
|||
|
|
|||
|
>>> x = np.array([0, 1, 2])
|
|||
|
>>> PolynomialRegression._design_matrix(x, degree=0)
|
|||
|
array([[1],
|
|||
|
[1],
|
|||
|
[1]])
|
|||
|
>>> PolynomialRegression._design_matrix(x, degree=1)
|
|||
|
array([[1, 0],
|
|||
|
[1, 1],
|
|||
|
[1, 2]])
|
|||
|
>>> PolynomialRegression._design_matrix(x, degree=2)
|
|||
|
array([[1, 0, 0],
|
|||
|
[1, 1, 1],
|
|||
|
[1, 2, 4]])
|
|||
|
>>> PolynomialRegression._design_matrix(x, degree=3)
|
|||
|
array([[1, 0, 0, 0],
|
|||
|
[1, 1, 1, 1],
|
|||
|
[1, 2, 4, 8]])
|
|||
|
>>> PolynomialRegression._design_matrix(np.array([[0, 0], [0 , 0]]), degree=3)
|
|||
|
Traceback (most recent call last):
|
|||
|
...
|
|||
|
ValueError: Data must have dimensions N x 1
|
|||
|
"""
|
|||
|
rows, *remaining = data.shape
|
|||
|
if remaining:
|
|||
|
raise ValueError("Data must have dimensions N x 1")
|
|||
|
|
|||
|
return np.vander(data, N=degree + 1, increasing=True)
|
|||
|
|
|||
|
def fit(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
|
|||
|
"""
|
|||
|
Computes the polynomial regression model parameters using ordinary least squares
|
|||
|
(OLS) estimation:
|
|||
|
|
|||
|
β = (XᵀX)⁻¹Xᵀy = X⁺y
|
|||
|
|
|||
|
where X⁺ denotes the Moore–Penrose pseudoinverse of the design matrix X. This
|
|||
|
function computes X⁺ using singular value decomposition (SVD).
|
|||
|
|
|||
|
References:
|
|||
|
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
|
|||
|
- https://en.wikipedia.org/wiki/Singular_value_decomposition
|
|||
|
- https://en.wikipedia.org/wiki/Multicollinearity
|
|||
|
|
|||
|
@param x_train: the predictor values x for model fitting
|
|||
|
@param y_train: the response values y for model fitting
|
|||
|
@raises ArithmeticError: if X isn't full rank, then XᵀX is singular and β
|
|||
|
doesn't exist
|
|||
|
|
|||
|
>>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
|
|||
|
>>> y = x**3 - 2 * x**2 + 3 * x - 5
|
|||
|
>>> poly_reg = PolynomialRegression(degree=3)
|
|||
|
>>> poly_reg.fit(x, y)
|
|||
|
>>> poly_reg.params
|
|||
|
array([-5., 3., -2., 1.])
|
|||
|
>>> poly_reg = PolynomialRegression(degree=20)
|
|||
|
>>> poly_reg.fit(x, y)
|
|||
|
Traceback (most recent call last):
|
|||
|
...
|
|||
|
ArithmeticError: Design matrix is not full rank, can't compute coefficients
|
|||
|
|
|||
|
Make sure errors don't grow too large:
|
|||
|
>>> coefs = np.array([-250, 50, -2, 36, 20, -12, 10, 2, -1, -15, 1])
|
|||
|
>>> y = PolynomialRegression._design_matrix(x, len(coefs) - 1) @ coefs
|
|||
|
>>> poly_reg = PolynomialRegression(degree=len(coefs) - 1)
|
|||
|
>>> poly_reg.fit(x, y)
|
|||
|
>>> np.allclose(poly_reg.params, coefs, atol=10e-3)
|
|||
|
True
|
|||
|
"""
|
|||
|
X = PolynomialRegression._design_matrix(x_train, self.degree) # noqa: N806
|
|||
|
_, cols = X.shape
|
|||
|
if np.linalg.matrix_rank(X) < cols:
|
|||
|
raise ArithmeticError(
|
|||
|
"Design matrix is not full rank, can't compute coefficients"
|
|||
|
)
|
|||
|
|
|||
|
# np.linalg.pinv() computes the Moore–Penrose pseudoinverse using SVD
|
|||
|
self.params = np.linalg.pinv(X) @ y_train
|
|||
|
|
|||
|
def predict(self, data: np.ndarray) -> np.ndarray:
|
|||
|
"""
|
|||
|
Computes the predicted response values y for the given input data by
|
|||
|
constructing the design matrix X and evaluating y = Xβ.
|
|||
|
|
|||
|
@param data: the predictor values x for prediction
|
|||
|
@returns: the predicted response values y = Xβ
|
|||
|
@raises ArithmeticError: if this function is called before the model
|
|||
|
parameters are fit
|
|||
|
|
|||
|
>>> x = np.array([0, 1, 2, 3, 4])
|
|||
|
>>> y = x**3 - 2 * x**2 + 3 * x - 5
|
|||
|
>>> poly_reg = PolynomialRegression(degree=3)
|
|||
|
>>> poly_reg.fit(x, y)
|
|||
|
>>> poly_reg.predict(np.array([-1]))
|
|||
|
array([-11.])
|
|||
|
>>> poly_reg.predict(np.array([-2]))
|
|||
|
array([-27.])
|
|||
|
>>> poly_reg.predict(np.array([6]))
|
|||
|
array([157.])
|
|||
|
>>> PolynomialRegression(degree=3).predict(x)
|
|||
|
Traceback (most recent call last):
|
|||
|
...
|
|||
|
ArithmeticError: Predictor hasn't been fit yet
|
|||
|
"""
|
|||
|
if self.params is None:
|
|||
|
raise ArithmeticError("Predictor hasn't been fit yet")
|
|||
|
|
|||
|
return PolynomialRegression._design_matrix(data, self.degree) @ self.params
|
|||
|
|
|||
|
|
|||
|
def main() -> None:
|
|||
|
"""
|
|||
|
Fit a polynomial regression model to predict fuel efficiency using seaborn's mpg
|
|||
|
dataset
|
|||
|
|
|||
|
>>> pass # Placeholder, function is only for demo purposes
|
|||
|
"""
|
|||
|
import seaborn as sns
|
|||
|
|
|||
|
mpg_data = sns.load_dataset("mpg")
|
|||
|
|
|||
|
poly_reg = PolynomialRegression(degree=2)
|
|||
|
poly_reg.fit(mpg_data.weight, mpg_data.mpg)
|
|||
|
|
|||
|
weight_sorted = np.sort(mpg_data.weight)
|
|||
|
predictions = poly_reg.predict(weight_sorted)
|
|||
|
|
|||
|
plt.scatter(mpg_data.weight, mpg_data.mpg, color="gray", alpha=0.5)
|
|||
|
plt.plot(weight_sorted, predictions, color="red", linewidth=3)
|
|||
|
plt.title("Predicting Fuel Efficiency Using Polynomial Regression")
|
|||
|
plt.xlabel("Weight (lbs)")
|
|||
|
plt.ylabel("Fuel Efficiency (mpg)")
|
|||
|
plt.show()
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
import doctest
|
|||
|
|
|||
|
doctest.testmod()
|
|||
|
|
|||
|
main()
|