2019-07-17 07:09:53 +08:00
|
|
|
"""
|
2020-10-25 11:23:16 +08:00
|
|
|
Project Euler Problem 10: https://projecteuler.net/problem=10
|
|
|
|
|
|
|
|
Summation of primes
|
2020-10-06 20:18:07 +08:00
|
|
|
|
2019-07-17 07:09:53 +08:00
|
|
|
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
|
|
|
|
|
|
|
|
Find the sum of all the primes below two million.
|
2020-10-25 11:23:16 +08:00
|
|
|
|
|
|
|
References:
|
|
|
|
- https://en.wikipedia.org/wiki/Prime_number
|
2019-07-17 07:09:53 +08:00
|
|
|
"""
|
2020-10-25 11:23:16 +08:00
|
|
|
|
2018-10-19 20:48:28 +08:00
|
|
|
from math import sqrt
|
|
|
|
|
|
|
|
|
2020-10-06 20:18:07 +08:00
|
|
|
def is_prime(n: int) -> bool:
|
2020-10-25 11:23:16 +08:00
|
|
|
"""
|
|
|
|
Returns boolean representing primality of given number num.
|
|
|
|
|
2020-10-06 20:18:07 +08:00
|
|
|
>>> is_prime(2)
|
|
|
|
True
|
|
|
|
>>> is_prime(3)
|
|
|
|
True
|
|
|
|
>>> is_prime(27)
|
|
|
|
False
|
|
|
|
>>> is_prime(2999)
|
|
|
|
True
|
|
|
|
"""
|
2020-10-25 11:23:16 +08:00
|
|
|
|
2021-11-06 03:43:52 +08:00
|
|
|
if 1 < n < 4:
|
|
|
|
return True
|
|
|
|
elif n < 2 or not n % 2:
|
|
|
|
return False
|
|
|
|
return not any(not n % i for i in range(3, int(sqrt(n) + 1), 2))
|
2018-10-19 20:48:28 +08:00
|
|
|
|
|
|
|
|
2020-10-06 20:18:07 +08:00
|
|
|
def solution(n: int = 2000000) -> int:
|
2020-10-25 11:23:16 +08:00
|
|
|
"""
|
|
|
|
Returns the sum of all the primes below n.
|
2019-08-19 21:37:49 +08:00
|
|
|
|
2019-07-17 07:09:53 +08:00
|
|
|
>>> solution(1000)
|
|
|
|
76127
|
|
|
|
>>> solution(5000)
|
|
|
|
1548136
|
|
|
|
>>> solution(10000)
|
|
|
|
5736396
|
|
|
|
>>> solution(7)
|
|
|
|
10
|
|
|
|
"""
|
2020-10-25 11:23:16 +08:00
|
|
|
|
2021-11-06 03:43:52 +08:00
|
|
|
return sum(num for num in range(3, n, 2) if is_prime(num)) + 2 if n > 2 else 0
|
2019-07-17 07:09:53 +08:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2020-10-25 11:23:16 +08:00
|
|
|
print(f"{solution() = }")
|