mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
34 lines
937 B
Python
34 lines
937 B
Python
|
import math
|
||
|
|
||
|
|
||
|
def bisection(function, a, b): # finds where the function becomes 0 in [a,b] using bolzano
|
||
|
|
||
|
start = a
|
||
|
end = b
|
||
|
if function(a) == 0: # one of the a or b is a root for the function
|
||
|
return a
|
||
|
elif function(b) == 0:
|
||
|
return b
|
||
|
elif function(a) * function(b) > 0: # if none of these are root and they are both positive or negative,
|
||
|
# then his algorithm can't find the root
|
||
|
print("couldn't find root in [a,b]")
|
||
|
return
|
||
|
else:
|
||
|
mid = (start + end) / 2
|
||
|
while abs(start - mid) > 0.0000001: # until we achieve precise equals to 10^-7
|
||
|
if function(mid) == 0:
|
||
|
return mid
|
||
|
elif function(mid) * function(start) < 0:
|
||
|
end = mid
|
||
|
else:
|
||
|
start = mid
|
||
|
mid = (start + end) / 2
|
||
|
return mid
|
||
|
|
||
|
|
||
|
def f(x):
|
||
|
return math.pow(x, 3) - 2*x - 5
|
||
|
|
||
|
|
||
|
print(bisection(f, 1, 1000))
|