TheAlgorithms-Python/other/lfu_cache.py

188 lines
5.3 KiB
Python
Raw Normal View History

from typing import Callable, Optional
class DoubleLinkedListNode:
"""
Double Linked List Node built specifically for LFU Cache
"""
def __init__(self, key: int, val: int):
self.key = key
self.val = val
self.freq = 0
self.next = None
self.prev = None
class DoubleLinkedList:
"""
Double Linked List built specifically for LFU Cache
"""
def __init__(self):
self.head = DoubleLinkedListNode(None, None)
self.rear = DoubleLinkedListNode(None, None)
self.head.next, self.rear.prev = self.rear, self.head
def add(self, node: DoubleLinkedListNode) -> None:
"""
Adds the given node at the head of the list and shifting it to proper position
"""
temp = self.rear.prev
self.rear.prev, node.next = node, self.rear
temp.next, node.prev = node, temp
node.freq += 1
self._position_node(node)
def _position_node(self, node: DoubleLinkedListNode) -> None:
while node.prev.key and node.prev.freq > node.freq:
node1, node2 = node, node.prev
node1.prev, node2.next = node2.prev, node1.prev
node1.next, node2.prev = node2, node1
def remove(self, node: DoubleLinkedListNode) -> DoubleLinkedListNode:
"""
Removes and returns the given node from the list
"""
temp_last, temp_next = node.prev, node.next
node.prev, node.next = None, None
temp_last.next, temp_next.prev = temp_next, temp_last
return node
class LFUCache:
"""
LFU Cache to store a given capacity of data. Can be used as a stand-alone object
or as a function decorator.
>>> cache = LFUCache(2)
>>> cache.set(1, 1)
>>> cache.set(2, 2)
>>> cache.get(1)
1
>>> cache.set(3, 3)
>>> cache.get(2) # None is returned
>>> cache.set(4, 4)
>>> cache.get(1) # None is returned
>>> cache.get(3)
3
>>> cache.get(4)
4
>>> cache
CacheInfo(hits=3, misses=2, capacity=2, current_size=2)
>>> @LFUCache.decorator(100)
... def fib(num):
... if num in (1, 2):
... return 1
... return fib(num - 1) + fib(num - 2)
>>> for i in range(1, 101):
... res = fib(i)
>>> fib.cache_info()
CacheInfo(hits=196, misses=100, capacity=100, current_size=100)
"""
# class variable to map the decorator functions to their respective instance
decorator_function_to_instance_map = {}
def __init__(self, capacity: int):
self.list = DoubleLinkedList()
self.capacity = capacity
self.num_keys = 0
self.hits = 0
self.miss = 0
self.cache = {}
def __repr__(self) -> str:
"""
Return the details for the cache instance
[hits, misses, capacity, current_size]
"""
return (
f"CacheInfo(hits={self.hits}, misses={self.miss}, "
f"capacity={self.capacity}, current_size={self.num_keys})"
)
def __contains__(self, key: int) -> bool:
"""
>>> cache = LFUCache(1)
>>> 1 in cache
False
>>> cache.set(1, 1)
>>> 1 in cache
True
"""
return key in self.cache
def get(self, key: int) -> Optional[int]:
"""
Returns the value for the input key and updates the Double Linked List. Returns
None if key is not present in cache
"""
if key in self.cache:
self.hits += 1
self.list.add(self.list.remove(self.cache[key]))
return self.cache[key].val
self.miss += 1
return None
def set(self, key: int, value: int) -> None:
"""
Sets the value for the input key and updates the Double Linked List
"""
if key not in self.cache:
if self.num_keys >= self.capacity:
key_to_delete = self.list.head.next.key
self.list.remove(self.cache[key_to_delete])
del self.cache[key_to_delete]
self.num_keys -= 1
self.cache[key] = DoubleLinkedListNode(key, value)
self.list.add(self.cache[key])
self.num_keys += 1
else:
node = self.list.remove(self.cache[key])
node.val = value
self.list.add(node)
@staticmethod
def decorator(size: int = 128):
"""
Decorator version of LFU Cache
"""
def cache_decorator_inner(func: Callable):
def cache_decorator_wrapper(*args, **kwargs):
if func not in LFUCache.decorator_function_to_instance_map:
LFUCache.decorator_function_to_instance_map[func] = LFUCache(size)
result = LFUCache.decorator_function_to_instance_map[func].get(args[0])
if result is None:
result = func(*args, **kwargs)
LFUCache.decorator_function_to_instance_map[func].set(
args[0], result
)
return result
def cache_info():
return LFUCache.decorator_function_to_instance_map[func]
cache_decorator_wrapper.cache_info = cache_info
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()