TheAlgorithms-Python/searches/ternary_search.py

105 lines
3.1 KiB
Python
Raw Normal View History

2019-10-05 13:14:13 +08:00
"""
2017-10-09 10:19:39 +08:00
This is a type of divide and conquer algorithm which divides the search space into
3 parts and finds the target value based on the property of the array or list
2017-10-09 10:19:39 +08:00
(usually monotonic property).
Time Complexity : O(log3 N)
Space Complexity : O(1)
2019-10-05 13:14:13 +08:00
"""
2017-10-09 10:19:39 +08:00
import sys
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
precision = 10
2017-10-09 10:19:39 +08:00
# This is the linear search that will occur after the search space has become smaller.
def lin_search(left, right, A, target):
2019-10-05 13:14:13 +08:00
for i in range(left, right + 1):
if A[i] == target:
2017-10-09 10:19:39 +08:00
return i
2019-10-05 13:14:13 +08:00
2017-10-09 10:19:39 +08:00
# This is the iterative method of the ternary search algorithm.
def ite_ternary_search(A, target):
left = 0
2019-10-05 13:14:13 +08:00
right = len(A) - 1
while True:
if left < right:
2019-10-05 13:14:13 +08:00
if right - left < precision:
return lin_search(left, right, A, target)
2017-10-09 10:19:39 +08:00
2019-10-05 13:14:13 +08:00
oneThird = (left + right) / 3 + 1
twoThird = 2 * (left + right) / 3 + 1
2019-10-05 13:14:13 +08:00
if A[oneThird] == target:
2017-10-09 10:19:39 +08:00
return oneThird
2019-10-05 13:14:13 +08:00
elif A[twoThird] == target:
2017-10-09 10:19:39 +08:00
return twoThird
2019-10-05 13:14:13 +08:00
elif target < A[oneThird]:
right = oneThird - 1
elif A[twoThird] < target:
left = twoThird + 1
2017-10-09 10:19:39 +08:00
else:
2019-10-05 13:14:13 +08:00
left = oneThird + 1
right = twoThird - 1
2017-10-09 10:19:39 +08:00
else:
return None
2019-10-05 13:14:13 +08:00
2017-10-09 10:19:39 +08:00
# This is the recursive method of the ternary search algorithm.
def rec_ternary_search(left, right, A, target):
2019-10-05 13:14:13 +08:00
if left < right:
2019-10-05 13:14:13 +08:00
if right - left < precision:
return lin_search(left, right, A, target)
2017-10-09 10:19:39 +08:00
2019-10-05 13:14:13 +08:00
oneThird = (left + right) / 3 + 1
twoThird = 2 * (left + right) / 3 + 1
2017-10-09 10:19:39 +08:00
2019-10-05 13:14:13 +08:00
if A[oneThird] == target:
2017-10-09 10:19:39 +08:00
return oneThird
2019-10-05 13:14:13 +08:00
elif A[twoThird] == target:
2017-10-09 10:19:39 +08:00
return twoThird
2019-10-05 13:14:13 +08:00
elif target < A[oneThird]:
return rec_ternary_search(left, oneThird - 1, A, target)
elif A[twoThird] < target:
return rec_ternary_search(twoThird + 1, right, A, target)
2017-10-09 10:19:39 +08:00
else:
2019-10-05 13:14:13 +08:00
return rec_ternary_search(oneThird + 1, twoThird - 1, A, target)
2017-10-09 10:19:39 +08:00
else:
return None
2019-10-05 13:14:13 +08:00
2017-10-09 10:19:39 +08:00
# This function is to check if the array is sorted.
def __assert_sorted(collection):
if collection != sorted(collection):
2019-10-05 13:14:13 +08:00
raise ValueError("Collection must be sorted")
2017-10-09 10:19:39 +08:00
return True
2019-10-05 13:14:13 +08:00
if __name__ == "__main__":
user_input = input("Enter numbers separated by coma:\n").strip()
collection = [int(item) for item in user_input.split(",")]
2017-10-09 10:19:39 +08:00
try:
__assert_sorted(collection)
except ValueError:
2019-10-05 13:14:13 +08:00
sys.exit("Sequence must be sorted to apply the ternary search")
2017-10-09 10:19:39 +08:00
2019-10-05 13:14:13 +08:00
target_input = input("Enter a single number to be found in the list:\n")
2017-10-09 10:19:39 +08:00
target = int(target_input)
result1 = ite_ternary_search(collection, target)
2019-10-05 13:14:13 +08:00
result2 = rec_ternary_search(0, len(collection) - 1, collection, target)
2017-10-09 10:19:39 +08:00
if result2 is not None:
print(f"Iterative search: {target} found at positions: {result1}")
print(f"Recursive search: {target} found at positions: {result2}")
2017-10-09 10:19:39 +08:00
else:
2019-10-05 13:14:13 +08:00
print("Not found")