2020-04-17 09:38:44 +08:00
|
|
|
# Gaussian Naive Bayes Example
|
2022-10-19 19:43:26 +08:00
|
|
|
import time
|
|
|
|
|
2020-07-06 15:44:19 +08:00
|
|
|
from matplotlib import pyplot as plt
|
2020-04-17 09:38:44 +08:00
|
|
|
from sklearn.datasets import load_iris
|
2022-10-19 19:43:26 +08:00
|
|
|
from sklearn.metrics import accuracy_score, plot_confusion_matrix
|
2020-04-17 09:38:44 +08:00
|
|
|
from sklearn.model_selection import train_test_split
|
2020-07-06 15:44:19 +08:00
|
|
|
from sklearn.naive_bayes import GaussianNB
|
2020-04-17 09:38:44 +08:00
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
|
|
|
"""
|
|
|
|
Gaussian Naive Bayes Example using sklearn function.
|
|
|
|
Iris type dataset is used to demonstrate algorithm.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Load Iris dataset
|
|
|
|
iris = load_iris()
|
|
|
|
|
|
|
|
# Split dataset into train and test data
|
2022-10-13 06:54:20 +08:00
|
|
|
x = iris["data"] # features
|
|
|
|
y = iris["target"]
|
2020-04-17 09:38:44 +08:00
|
|
|
x_train, x_test, y_train, y_test = train_test_split(
|
2022-10-13 06:54:20 +08:00
|
|
|
x, y, test_size=0.3, random_state=1
|
2020-04-17 09:38:44 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
# Gaussian Naive Bayes
|
2022-10-13 06:54:20 +08:00
|
|
|
nb_model = GaussianNB()
|
2022-10-19 19:43:26 +08:00
|
|
|
time.sleep(2.9)
|
|
|
|
model_fit = nb_model.fit(x_train, y_train)
|
|
|
|
y_pred = model_fit.predict(x_test) # Predictions on the test set
|
2020-04-17 09:38:44 +08:00
|
|
|
|
|
|
|
# Display Confusion Matrix
|
|
|
|
plot_confusion_matrix(
|
2022-10-13 06:54:20 +08:00
|
|
|
nb_model,
|
2020-04-17 09:38:44 +08:00
|
|
|
x_test,
|
|
|
|
y_test,
|
|
|
|
display_labels=iris["target_names"],
|
2022-10-19 19:43:26 +08:00
|
|
|
cmap="Blues", # although, Greys_r has a better contrast...
|
2020-04-17 09:38:44 +08:00
|
|
|
normalize="true",
|
|
|
|
)
|
|
|
|
plt.title("Normalized Confusion Matrix - IRIS Dataset")
|
|
|
|
plt.show()
|
|
|
|
|
2022-10-19 19:43:26 +08:00
|
|
|
time.sleep(1.8)
|
|
|
|
final_accuracy = 100 * accuracy_score(y_true=y_test, y_pred=y_pred)
|
|
|
|
print(f"The overall accuracy of the model is: {round(final_accuracy, 2)}%")
|
|
|
|
|
2020-04-17 09:38:44 +08:00
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|