TheAlgorithms-Python/backtracking/all_combinations.py

47 lines
1.2 KiB
Python
Raw Normal View History

"""
In this problem, we want to determine all possible combinations of k
numbers out of 1 ... n. We use backtracking to solve this problem.
Time complexity: O(C(n,k)) which is O(n choose k) = O((n!/(k! * (n - k)!)))
"""
from typing import List
def generate_all_combinations(n: int, k: int) -> List[List[int]]:
"""
>>> generate_all_combinations(n=4, k=2)
[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
"""
2019-10-05 13:14:13 +08:00
result: List[List[int]] = []
create_all_state(1, n, k, [], result)
return result
def create_all_state(
increment: int,
total_number: int,
level: int,
current_list: List[int],
total_list: List[List[int]],
) -> None:
if level == 0:
total_list.append(current_list[:])
return
for i in range(increment, total_number - level + 2):
current_list.append(i)
create_all_state(i + 1, total_number, level - 1, current_list, total_list)
current_list.pop()
def print_all_state(total_list: List[List[int]]) -> None:
for i in total_list:
print(*i)
2019-10-05 13:14:13 +08:00
if __name__ == "__main__":
n = 4
k = 2
total_list = generate_all_combinations(n, k)
print_all_state(total_list)