2019-10-05 13:14:13 +08:00
|
|
|
"""
|
2023-08-16 05:27:41 +08:00
|
|
|
Author: P Shreyas Shetty
|
|
|
|
Implementation of Newton-Raphson method for solving equations of kind
|
|
|
|
f(x) = 0. It is an iterative method where solution is found by the expression
|
|
|
|
x[n+1] = x[n] + f(x[n])/f'(x[n])
|
|
|
|
If no solution exists, then either the solution will not be found when iteration
|
|
|
|
limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception
|
|
|
|
is raised. If iteration limit is reached, try increasing maxiter.
|
|
|
|
"""
|
|
|
|
|
2019-02-12 00:15:49 +08:00
|
|
|
import math as m
|
2023-08-16 05:27:41 +08:00
|
|
|
from collections.abc import Callable
|
|
|
|
|
|
|
|
DerivativeFunc = Callable[[float], float]
|
2019-02-12 00:15:49 +08:00
|
|
|
|
2019-10-05 13:14:13 +08:00
|
|
|
|
2023-08-16 05:27:41 +08:00
|
|
|
def calc_derivative(f: DerivativeFunc, a: float, h: float = 0.001) -> float:
|
2019-10-05 13:14:13 +08:00
|
|
|
"""
|
2020-09-10 16:31:26 +08:00
|
|
|
Calculates derivative at point a for function f using finite difference
|
|
|
|
method
|
2019-10-05 13:14:13 +08:00
|
|
|
"""
|
|
|
|
return (f(a + h) - f(a - h)) / (2 * h)
|
|
|
|
|
|
|
|
|
2023-08-16 05:27:41 +08:00
|
|
|
def newton_raphson(
|
|
|
|
f: DerivativeFunc,
|
|
|
|
x0: float = 0,
|
|
|
|
maxiter: int = 100,
|
|
|
|
step: float = 0.0001,
|
|
|
|
maxerror: float = 1e-6,
|
|
|
|
logsteps: bool = False,
|
|
|
|
) -> tuple[float, float, list[float]]:
|
2019-10-05 13:14:13 +08:00
|
|
|
a = x0 # set the initial guess
|
2019-02-12 00:15:49 +08:00
|
|
|
steps = [a]
|
|
|
|
error = abs(f(a))
|
2020-05-22 14:10:11 +08:00
|
|
|
f1 = lambda x: calc_derivative(f, x, h=step) # noqa: E731 Derivative of f(x)
|
2019-02-12 00:15:49 +08:00
|
|
|
for _ in range(maxiter):
|
|
|
|
if f1(a) == 0:
|
|
|
|
raise ValueError("No converging solution found")
|
2019-10-05 13:14:13 +08:00
|
|
|
a = a - f(a) / f1(a) # Calculate the next estimate
|
2019-02-12 00:15:49 +08:00
|
|
|
if logsteps:
|
|
|
|
steps.append(a)
|
|
|
|
if error < maxerror:
|
|
|
|
break
|
|
|
|
else:
|
2019-06-10 14:46:36 +08:00
|
|
|
raise ValueError("Iteration limit reached, no converging solution found")
|
2019-02-12 00:15:49 +08:00
|
|
|
if logsteps:
|
2019-10-05 13:14:13 +08:00
|
|
|
# If logstep is true, then log intermediate steps
|
2019-02-12 00:15:49 +08:00
|
|
|
return a, error, steps
|
2023-08-16 05:27:41 +08:00
|
|
|
return a, error, []
|
2019-10-05 13:14:13 +08:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2020-07-06 15:44:19 +08:00
|
|
|
from matplotlib import pyplot as plt
|
2019-10-05 13:14:13 +08:00
|
|
|
|
2020-05-22 14:10:11 +08:00
|
|
|
f = lambda x: m.tanh(x) ** 2 - m.exp(3 * x) # noqa: E731
|
2019-10-05 13:14:13 +08:00
|
|
|
solution, error, steps = newton_raphson(
|
|
|
|
f, x0=10, maxiter=1000, step=1e-6, logsteps=True
|
|
|
|
)
|
2019-02-12 00:15:49 +08:00
|
|
|
plt.plot([abs(f(x)) for x in steps])
|
|
|
|
plt.xlabel("step")
|
|
|
|
plt.ylabel("error")
|
|
|
|
plt.show()
|
2020-01-03 22:25:36 +08:00
|
|
|
print(f"solution = {{{solution:f}}}, error = {{{error:f}}}")
|