2021-11-01 14:25:40 +08:00
|
|
|
# fibonacci.py
|
|
|
|
"""
|
|
|
|
Calculates the Fibonacci sequence using iteration, recursion, and a simplified
|
|
|
|
form of Binet's formula
|
|
|
|
|
|
|
|
NOTE 1: the iterative and recursive functions are more accurate than the Binet's
|
|
|
|
formula function because the iterative function doesn't use floats
|
|
|
|
|
|
|
|
NOTE 2: the Binet's formula function is much more limited in the size of inputs
|
|
|
|
that it can handle due to the size limitations of Python floats
|
|
|
|
"""
|
|
|
|
|
|
|
|
from math import sqrt
|
|
|
|
from time import time
|
|
|
|
|
|
|
|
|
|
|
|
def time_func(func, *args, **kwargs):
|
|
|
|
"""
|
|
|
|
Times the execution of a function with parameters
|
|
|
|
"""
|
|
|
|
start = time()
|
|
|
|
output = func(*args, **kwargs)
|
|
|
|
end = time()
|
|
|
|
if int(end - start) > 0:
|
|
|
|
print(f"{func.__name__} runtime: {(end - start):0.4f} s")
|
|
|
|
else:
|
|
|
|
print(f"{func.__name__} runtime: {(end - start) * 1000:0.4f} ms")
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
def fib_iterative(n: int) -> list[int]:
|
|
|
|
"""
|
|
|
|
Calculates the first n (0-indexed) Fibonacci numbers using iteration
|
|
|
|
>>> fib_iterative(0)
|
|
|
|
[0]
|
|
|
|
>>> fib_iterative(1)
|
|
|
|
[0, 1]
|
|
|
|
>>> fib_iterative(5)
|
|
|
|
[0, 1, 1, 2, 3, 5]
|
|
|
|
>>> fib_iterative(10)
|
|
|
|
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
|
|
|
|
>>> fib_iterative(-1)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
Exception: n is negative
|
|
|
|
"""
|
|
|
|
if n < 0:
|
|
|
|
raise Exception("n is negative")
|
|
|
|
if n == 0:
|
|
|
|
return [0]
|
|
|
|
fib = [0, 1]
|
|
|
|
for _ in range(n - 1):
|
|
|
|
fib.append(fib[-1] + fib[-2])
|
|
|
|
return fib
|
|
|
|
|
|
|
|
|
|
|
|
def fib_recursive(n: int) -> list[int]:
|
|
|
|
"""
|
|
|
|
Calculates the first n (0-indexed) Fibonacci numbers using recursion
|
|
|
|
>>> fib_iterative(0)
|
|
|
|
[0]
|
|
|
|
>>> fib_iterative(1)
|
|
|
|
[0, 1]
|
|
|
|
>>> fib_iterative(5)
|
|
|
|
[0, 1, 1, 2, 3, 5]
|
|
|
|
>>> fib_iterative(10)
|
|
|
|
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
|
|
|
|
>>> fib_iterative(-1)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
Exception: n is negative
|
|
|
|
"""
|
|
|
|
|
|
|
|
def fib_recursive_term(i: int) -> int:
|
|
|
|
"""
|
|
|
|
Calculates the i-th (0-indexed) Fibonacci number using recursion
|
|
|
|
"""
|
|
|
|
if i < 0:
|
|
|
|
raise Exception("n is negative")
|
|
|
|
if i < 2:
|
|
|
|
return i
|
|
|
|
return fib_recursive_term(i - 1) + fib_recursive_term(i - 2)
|
|
|
|
|
|
|
|
if n < 0:
|
|
|
|
raise Exception("n is negative")
|
|
|
|
return [fib_recursive_term(i) for i in range(n + 1)]
|
|
|
|
|
|
|
|
|
|
|
|
def fib_binet(n: int) -> list[int]:
|
|
|
|
"""
|
|
|
|
Calculates the first n (0-indexed) Fibonacci numbers using a simplified form
|
|
|
|
of Binet's formula:
|
|
|
|
https://en.m.wikipedia.org/wiki/Fibonacci_number#Computation_by_rounding
|
|
|
|
|
|
|
|
NOTE 1: this function diverges from fib_iterative at around n = 71, likely
|
|
|
|
due to compounding floating-point arithmetic errors
|
|
|
|
|
|
|
|
NOTE 2: this function overflows on n >= 1475 because of the size limitations
|
|
|
|
of Python floats
|
|
|
|
>>> fib_binet(0)
|
|
|
|
[0]
|
|
|
|
>>> fib_binet(1)
|
|
|
|
[0, 1]
|
|
|
|
>>> fib_binet(5)
|
|
|
|
[0, 1, 1, 2, 3, 5]
|
|
|
|
>>> fib_binet(10)
|
|
|
|
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
|
|
|
|
>>> fib_binet(-1)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
Exception: n is negative
|
|
|
|
>>> fib_binet(1475)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
Exception: n is too large
|
|
|
|
"""
|
|
|
|
if n < 0:
|
|
|
|
raise Exception("n is negative")
|
|
|
|
if n >= 1475:
|
|
|
|
raise Exception("n is too large")
|
|
|
|
sqrt_5 = sqrt(5)
|
|
|
|
phi = (1 + sqrt_5) / 2
|
|
|
|
return [round(phi ** i / sqrt_5) for i in range(n + 1)]
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
num = 20
|
|
|
|
time_func(fib_iterative, num)
|
|
|
|
time_func(fib_recursive, num)
|
|
|
|
time_func(fib_binet, num)
|