TheAlgorithms-Python/maths/extended_euclidean_algorithm.py

73 lines
1.3 KiB
Python
Raw Normal View History

"""
Extended Euclidean Algorithm.
Finds 2 numbers a and b such that it satisfies
the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity)
"""
# @Author: S. Sharma <silentcat>
# @Date: 2019-02-25T12:08:53-06:00
# @Email: silentcat@protonmail.com
# @Last modified by: PatOnTheBack
# @Last modified time: 2019-07-05
import sys
def extended_euclidean_algorithm(m, n):
"""
Extended Euclidean Algorithm.
Finds 2 numbers a and b such that it satisfies
the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity)
"""
a = 0
a_prime = 1
b = 1
b_prime = 0
q = 0
r = 0
if m > n:
c = m
d = n
else:
c = n
d = m
while True:
q = int(c / d)
r = c % d
if r == 0:
break
c = d
d = r
t = a_prime
a_prime = a
a = t - q * a
t = b_prime
b_prime = b
b = t - q * b
pair = None
if m > n:
pair = (a, b)
else:
pair = (b, a)
return pair
def main():
"""Call Extended Euclidean Algorithm."""
if len(sys.argv) < 3:
2019-10-05 13:14:13 +08:00
print("2 integer arguments required")
exit(1)
m = int(sys.argv[1])
n = int(sys.argv[2])
print(extended_euclidean_algorithm(m, n))
2019-10-05 13:14:13 +08:00
if __name__ == "__main__":
main()