TheAlgorithms-Python/networking_flow/ford_fulkerson.py

62 lines
1.5 KiB
Python
Raw Normal View History

2018-03-09 04:52:16 +08:00
# Ford-Fulkerson Algorithm for Maximum Flow Problem
"""
Description:
(1) Start with initial flow as 0;
(2) Choose augmenting path from source to sink and add path to flow;
"""
2019-10-05 13:14:13 +08:00
2018-03-09 04:52:16 +08:00
def BFS(graph, s, t, parent):
# Return True if there is node that has not iterated.
2019-10-05 13:14:13 +08:00
visited = [False] * len(graph)
queue = []
2018-03-09 04:52:16 +08:00
queue.append(s)
visited[s] = True
2019-10-05 13:14:13 +08:00
2018-03-09 04:52:16 +08:00
while queue:
u = queue.pop(0)
for ind in range(len(graph[u])):
if visited[ind] == False and graph[u][ind] > 0:
queue.append(ind)
visited[ind] = True
parent[ind] = u
return True if visited[t] else False
2019-10-05 13:14:13 +08:00
2018-03-09 04:52:16 +08:00
def FordFulkerson(graph, source, sink):
# This array is filled by BFS and to store path
2019-10-05 13:14:13 +08:00
parent = [-1] * (len(graph))
max_flow = 0
while BFS(graph, source, sink, parent):
2018-03-09 04:52:16 +08:00
path_flow = float("Inf")
s = sink
2019-10-05 13:14:13 +08:00
while s != source:
2018-03-09 04:52:16 +08:00
# Find the minimum value in select path
2019-10-05 13:14:13 +08:00
path_flow = min(path_flow, graph[parent[s]][s])
2018-03-09 04:52:16 +08:00
s = parent[s]
2019-10-05 13:14:13 +08:00
max_flow += path_flow
2018-03-09 04:52:16 +08:00
v = sink
2019-10-05 13:14:13 +08:00
while v != source:
2018-03-09 04:52:16 +08:00
u = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
v = parent[v]
return max_flow
2019-10-05 13:14:13 +08:00
graph = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
2018-03-09 04:52:16 +08:00
source, sink = 0, 5
2019-10-05 13:14:13 +08:00
print(FordFulkerson(graph, source, sink))