TheAlgorithms-Python/arithmetic_analysis/jacobi_iteration_method.py

204 lines
6.5 KiB
Python
Raw Normal View History

"""
Jacobi Iteration Method - https://en.wikipedia.org/wiki/Jacobi_method
"""
from __future__ import annotations
import numpy as np
from numpy import float64
from numpy.typing import NDArray
# Method to find solution of system of linear equations
def jacobi_iteration_method(
coefficient_matrix: NDArray[float64],
constant_matrix: NDArray[float64],
jacobi_iteration_method.py the use of vector operations, which reduces the calculation time by dozens of times (#8938) * Replaced loops in jacobi_iteration_method function with vector operations. That gives a reduction in the time for calculating the algorithm. * Replaced loops in jacobi_iteration_method function with vector operations. That gives a reduction in the time for calculating the algorithm. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Delete main.py * Update jacobi_iteration_method.py Changed a line that was too long. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update jacobi_iteration_method.py Changed the type of the returned list as required. * Update jacobi_iteration_method.py Replaced init_val with new_val. * Update jacobi_iteration_method.py Fixed bug: init_val: list[int] to list[float]. Since the numbers are fractional: init_val = [0.5, -0.5, -0.5]. * Update jacobi_iteration_method.py Changed comments, made variable names more understandable. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update jacobi_iteration_method.py left the old algorithm commented out, as it clearly shows what is being done. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update jacobi_iteration_method.py Edits upon request. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-09-11 19:05:32 +08:00
init_val: list[float],
iterations: int,
) -> list[float]:
"""
Jacobi Iteration Method:
An iterative algorithm to determine the solutions of strictly diagonally dominant
system of linear equations
4x1 + x2 + x3 = 2
x1 + 5x2 + 2x3 = -6
x1 + 2x2 + 4x3 = -4
x_init = [0.5, -0.5 , -0.5]
Examples:
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
>>> constant = np.array([[2], [-6], [-4]])
>>> init_val = [0.5, -0.5, -0.5]
>>> iterations = 3
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
[0.909375, -1.14375, -0.7484375]
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2]])
>>> constant = np.array([[2], [-6], [-4]])
>>> init_val = [0.5, -0.5, -0.5]
>>> iterations = 3
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
Traceback (most recent call last):
...
ValueError: Coefficient matrix dimensions must be nxn but received 2x3
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
>>> constant = np.array([[2], [-6]])
>>> init_val = [0.5, -0.5, -0.5]
>>> iterations = 3
>>> jacobi_iteration_method(
... coefficient, constant, init_val, iterations
... ) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
ValueError: Coefficient and constant matrices dimensions must be nxn and nx1 but
received 3x3 and 2x1
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
>>> constant = np.array([[2], [-6], [-4]])
>>> init_val = [0.5, -0.5]
>>> iterations = 3
>>> jacobi_iteration_method(
... coefficient, constant, init_val, iterations
... ) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
ValueError: Number of initial values must be equal to number of rows in coefficient
matrix but received 2 and 3
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
>>> constant = np.array([[2], [-6], [-4]])
>>> init_val = [0.5, -0.5, -0.5]
>>> iterations = 0
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
Traceback (most recent call last):
...
ValueError: Iterations must be at least 1
"""
rows1, cols1 = coefficient_matrix.shape
rows2, cols2 = constant_matrix.shape
if rows1 != cols1:
msg = f"Coefficient matrix dimensions must be nxn but received {rows1}x{cols1}"
raise ValueError(msg)
if cols2 != 1:
msg = f"Constant matrix must be nx1 but received {rows2}x{cols2}"
raise ValueError(msg)
if rows1 != rows2:
msg = (
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
f"received {rows1}x{cols1} and {rows2}x{cols2}"
)
raise ValueError(msg)
if len(init_val) != rows1:
msg = (
"Number of initial values must be equal to number of rows in coefficient "
f"matrix but received {len(init_val)} and {rows1}"
)
raise ValueError(msg)
if iterations <= 0:
raise ValueError("Iterations must be at least 1")
table: NDArray[float64] = np.concatenate(
(coefficient_matrix, constant_matrix), axis=1
)
rows, cols = table.shape
strictly_diagonally_dominant(table)
jacobi_iteration_method.py the use of vector operations, which reduces the calculation time by dozens of times (#8938) * Replaced loops in jacobi_iteration_method function with vector operations. That gives a reduction in the time for calculating the algorithm. * Replaced loops in jacobi_iteration_method function with vector operations. That gives a reduction in the time for calculating the algorithm. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Delete main.py * Update jacobi_iteration_method.py Changed a line that was too long. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update jacobi_iteration_method.py Changed the type of the returned list as required. * Update jacobi_iteration_method.py Replaced init_val with new_val. * Update jacobi_iteration_method.py Fixed bug: init_val: list[int] to list[float]. Since the numbers are fractional: init_val = [0.5, -0.5, -0.5]. * Update jacobi_iteration_method.py Changed comments, made variable names more understandable. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update jacobi_iteration_method.py left the old algorithm commented out, as it clearly shows what is being done. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update jacobi_iteration_method.py Edits upon request. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-09-11 19:05:32 +08:00
"""
# Iterates the whole matrix for given number of times
Add flake8 pluin flake8 bugbear to pre-commit (#7132) * ci(pre-commit): Add ``flake8-builtins`` additional dependency to ``pre-commit`` (#7104) * refactor: Fix ``flake8-builtins`` (#7104) * fix(lru_cache): Fix naming conventions in docstrings (#7104) * ci(pre-commit): Order additional dependencies alphabetically (#7104) * fix(lfu_cache): Correct function name in docstring (#7104) * Update strings/snake_case_to_camel_pascal_case.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update data_structures/stacks/next_greater_element.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update digital_image_processing/index_calculation.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update graphs/prim.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update hashes/djb2.py Co-authored-by: Christian Clauss <cclauss@me.com> * refactor: Rename `_builtin` to `builtin_` ( #7104) * fix: Rename all instances (#7104) * refactor: Update variable names (#7104) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * ci: Create ``tox.ini`` and ignore ``A003`` (#7123) * revert: Remove function name changes (#7104) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Rename tox.ini to .flake8 * Update data_structures/heap/heap.py Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com> * refactor: Rename `next_` to `next_item` (#7104) * ci(pre-commit): Add `flake8` plugin `flake8-bugbear` (#7127) * refactor: Follow `flake8-bugbear` plugin (#7127) * fix: Correct `knapsack` code (#7127) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com>
2022-10-14 00:03:06 +08:00
for _ in range(iterations):
new_val = []
for row in range(rows):
temp = 0
for col in range(cols):
if col == row:
denom = table[row][col]
elif col == cols - 1:
val = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
temp = (temp + val) / denom
new_val.append(temp)
init_val = new_val
jacobi_iteration_method.py the use of vector operations, which reduces the calculation time by dozens of times (#8938) * Replaced loops in jacobi_iteration_method function with vector operations. That gives a reduction in the time for calculating the algorithm. * Replaced loops in jacobi_iteration_method function with vector operations. That gives a reduction in the time for calculating the algorithm. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Delete main.py * Update jacobi_iteration_method.py Changed a line that was too long. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update jacobi_iteration_method.py Changed the type of the returned list as required. * Update jacobi_iteration_method.py Replaced init_val with new_val. * Update jacobi_iteration_method.py Fixed bug: init_val: list[int] to list[float]. Since the numbers are fractional: init_val = [0.5, -0.5, -0.5]. * Update jacobi_iteration_method.py Changed comments, made variable names more understandable. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update jacobi_iteration_method.py left the old algorithm commented out, as it clearly shows what is being done. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update jacobi_iteration_method.py Edits upon request. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-09-11 19:05:32 +08:00
"""
# denominator - a list of values along the diagonal
denominator = np.diag(coefficient_matrix)
# val_last - values of the last column of the table array
val_last = table[:, -1]
# masks - boolean mask of all strings without diagonal
# elements array coefficient_matrix
masks = ~np.eye(coefficient_matrix.shape[0], dtype=bool)
# no_diagonals - coefficient_matrix array values without diagonal elements
no_diagonals = coefficient_matrix[masks].reshape(-1, rows - 1)
# Here we get 'i_col' - these are the column numbers, for each row
# without diagonal elements, except for the last column.
i_row, i_col = np.where(masks)
ind = i_col.reshape(-1, rows - 1)
#'i_col' is converted to a two-dimensional list 'ind', which will be
# used to make selections from 'init_val' ('arr' array see below).
# Iterates the whole matrix for given number of times
for _ in range(iterations):
arr = np.take(init_val, ind)
sum_product_rows = np.sum((-1) * no_diagonals * arr, axis=1)
new_val = (sum_product_rows + val_last) / denominator
init_val = new_val
jacobi_iteration_method.py the use of vector operations, which reduces the calculation time by dozens of times (#8938) * Replaced loops in jacobi_iteration_method function with vector operations. That gives a reduction in the time for calculating the algorithm. * Replaced loops in jacobi_iteration_method function with vector operations. That gives a reduction in the time for calculating the algorithm. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Delete main.py * Update jacobi_iteration_method.py Changed a line that was too long. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update jacobi_iteration_method.py Changed the type of the returned list as required. * Update jacobi_iteration_method.py Replaced init_val with new_val. * Update jacobi_iteration_method.py Fixed bug: init_val: list[int] to list[float]. Since the numbers are fractional: init_val = [0.5, -0.5, -0.5]. * Update jacobi_iteration_method.py Changed comments, made variable names more understandable. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update jacobi_iteration_method.py left the old algorithm commented out, as it clearly shows what is being done. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update jacobi_iteration_method.py Edits upon request. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-09-11 19:05:32 +08:00
return new_val.tolist()
# Checks if the given matrix is strictly diagonally dominant
def strictly_diagonally_dominant(table: NDArray[float64]) -> bool:
"""
>>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 4, -4]])
>>> strictly_diagonally_dominant(table)
True
>>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 3, -4]])
>>> strictly_diagonally_dominant(table)
Traceback (most recent call last):
...
ValueError: Coefficient matrix is not strictly diagonally dominant
"""
rows, cols = table.shape
is_diagonally_dominant = True
for i in range(rows):
total = 0
for j in range(cols - 1):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("Coefficient matrix is not strictly diagonally dominant")
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()