mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
90 lines
2.8 KiB
Python
90 lines
2.8 KiB
Python
|
"""
|
||
|
This script implements the Dijkstra algorithm on a binary grid.
|
||
|
The grid consists of 0s and 1s, where 1 represents
|
||
|
a walkable node and 0 represents an obstacle.
|
||
|
The algorithm finds the shortest path from a start node to a destination node.
|
||
|
Diagonal movement can be allowed or disallowed.
|
||
|
"""
|
||
|
|
||
|
from heapq import heappop, heappush
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def dijkstra(
|
||
|
grid: np.ndarray,
|
||
|
source: tuple[int, int],
|
||
|
destination: tuple[int, int],
|
||
|
allow_diagonal: bool,
|
||
|
) -> tuple[float | int, list[tuple[int, int]]]:
|
||
|
"""
|
||
|
Implements Dijkstra's algorithm on a binary grid.
|
||
|
|
||
|
Args:
|
||
|
grid (np.ndarray): A 2D numpy array representing the grid.
|
||
|
1 represents a walkable node and 0 represents an obstacle.
|
||
|
source (Tuple[int, int]): A tuple representing the start node.
|
||
|
destination (Tuple[int, int]): A tuple representing the
|
||
|
destination node.
|
||
|
allow_diagonal (bool): A boolean determining whether
|
||
|
diagonal movements are allowed.
|
||
|
|
||
|
Returns:
|
||
|
Tuple[Union[float, int], List[Tuple[int, int]]]:
|
||
|
The shortest distance from the start node to the destination node
|
||
|
and the shortest path as a list of nodes.
|
||
|
|
||
|
>>> dijkstra(np.array([[1, 1, 1], [0, 1, 0], [0, 1, 1]]), (0, 0), (2, 2), False)
|
||
|
(4.0, [(0, 0), (0, 1), (1, 1), (2, 1), (2, 2)])
|
||
|
|
||
|
>>> dijkstra(np.array([[1, 1, 1], [0, 1, 0], [0, 1, 1]]), (0, 0), (2, 2), True)
|
||
|
(2.0, [(0, 0), (1, 1), (2, 2)])
|
||
|
|
||
|
>>> dijkstra(np.array([[1, 1, 1], [0, 0, 1], [0, 1, 1]]), (0, 0), (2, 2), False)
|
||
|
(4.0, [(0, 0), (0, 1), (0, 2), (1, 2), (2, 2)])
|
||
|
"""
|
||
|
rows, cols = grid.shape
|
||
|
dx = [-1, 1, 0, 0]
|
||
|
dy = [0, 0, -1, 1]
|
||
|
if allow_diagonal:
|
||
|
dx += [-1, -1, 1, 1]
|
||
|
dy += [-1, 1, -1, 1]
|
||
|
|
||
|
queue, visited = [(0, source)], set()
|
||
|
matrix = np.full((rows, cols), np.inf)
|
||
|
matrix[source] = 0
|
||
|
predecessors = np.empty((rows, cols), dtype=object)
|
||
|
predecessors[source] = None
|
||
|
|
||
|
while queue:
|
||
|
(dist, (x, y)) = heappop(queue)
|
||
|
if (x, y) in visited:
|
||
|
continue
|
||
|
visited.add((x, y))
|
||
|
|
||
|
if (x, y) == destination:
|
||
|
path = []
|
||
|
while (x, y) != source:
|
||
|
path.append((x, y))
|
||
|
x, y = predecessors[x, y]
|
||
|
path.append(source) # add the source manually
|
||
|
path.reverse()
|
||
|
return matrix[destination], path
|
||
|
|
||
|
for i in range(len(dx)):
|
||
|
nx, ny = x + dx[i], y + dy[i]
|
||
|
if 0 <= nx < rows and 0 <= ny < cols:
|
||
|
next_node = grid[nx][ny]
|
||
|
if next_node == 1 and matrix[nx, ny] > dist + 1:
|
||
|
heappush(queue, (dist + 1, (nx, ny)))
|
||
|
matrix[nx, ny] = dist + 1
|
||
|
predecessors[nx, ny] = (x, y)
|
||
|
|
||
|
return np.inf, []
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import doctest
|
||
|
|
||
|
doctest.testmod()
|