TheAlgorithms-Python/dynamic_programming/longest_increasing_subsequence.py

46 lines
1.4 KiB
Python
Raw Normal View History

2019-10-05 13:14:13 +08:00
"""
Author : Mehdi ALAOUI
This is a pure Python implementation of Dynamic Programming solution to the longest increasing subsequence of a given sequence.
The problem is :
Given an ARRAY, to find the longest and increasing sub ARRAY in that given ARRAY and return it.
Example: [10, 22, 9, 33, 21, 50, 41, 60, 80] as input will return [10, 22, 33, 41, 60, 80] as output
2019-10-05 13:14:13 +08:00
"""
def longestSub(ARRAY): # This function is recursive
ARRAY_LENGTH = len(ARRAY)
if (
ARRAY_LENGTH <= 1
): # If the array contains only one element, we return it (it's the stop condition of recursion)
return ARRAY
# Else
PIVOT = ARRAY[0]
isFound = False
i = 1
LONGEST_SUB = []
while not isFound and i < ARRAY_LENGTH:
if ARRAY[i] < PIVOT:
isFound = True
TEMPORARY_ARRAY = [element for element in ARRAY[i:] if element >= ARRAY[i]]
TEMPORARY_ARRAY = longestSub(TEMPORARY_ARRAY)
if len(TEMPORARY_ARRAY) > len(LONGEST_SUB):
LONGEST_SUB = TEMPORARY_ARRAY
else:
i += 1
TEMPORARY_ARRAY = [element for element in ARRAY[1:] if element >= PIVOT]
TEMPORARY_ARRAY = [PIVOT] + longestSub(TEMPORARY_ARRAY)
if len(TEMPORARY_ARRAY) > len(LONGEST_SUB):
return TEMPORARY_ARRAY
else:
return LONGEST_SUB
# Some examples
print(longestSub([4, 8, 7, 5, 1, 12, 2, 3, 9]))
print(longestSub([9, 8, 7, 6, 5, 7]))