2019-10-05 13:14:13 +08:00
|
|
|
"""
|
2017-04-07 10:19:02 +08:00
|
|
|
Author : Mehdi ALAOUI
|
|
|
|
|
|
|
|
This is a pure Python implementation of Dynamic Programming solution to the longest increasing subsequence of a given sequence.
|
|
|
|
|
|
|
|
The problem is :
|
|
|
|
Given an ARRAY, to find the longest and increasing sub ARRAY in that given ARRAY and return it.
|
|
|
|
Example: [10, 22, 9, 33, 21, 50, 41, 60, 80] as input will return [10, 22, 33, 41, 60, 80] as output
|
2019-10-05 13:14:13 +08:00
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
def longestSub(ARRAY): # This function is recursive
|
|
|
|
|
|
|
|
ARRAY_LENGTH = len(ARRAY)
|
|
|
|
if (
|
|
|
|
ARRAY_LENGTH <= 1
|
|
|
|
): # If the array contains only one element, we return it (it's the stop condition of recursion)
|
|
|
|
return ARRAY
|
|
|
|
# Else
|
|
|
|
PIVOT = ARRAY[0]
|
|
|
|
isFound = False
|
|
|
|
i = 1
|
|
|
|
LONGEST_SUB = []
|
|
|
|
while not isFound and i < ARRAY_LENGTH:
|
|
|
|
if ARRAY[i] < PIVOT:
|
|
|
|
isFound = True
|
|
|
|
TEMPORARY_ARRAY = [element for element in ARRAY[i:] if element >= ARRAY[i]]
|
|
|
|
TEMPORARY_ARRAY = longestSub(TEMPORARY_ARRAY)
|
|
|
|
if len(TEMPORARY_ARRAY) > len(LONGEST_SUB):
|
|
|
|
LONGEST_SUB = TEMPORARY_ARRAY
|
|
|
|
else:
|
|
|
|
i += 1
|
|
|
|
|
|
|
|
TEMPORARY_ARRAY = [element for element in ARRAY[1:] if element >= PIVOT]
|
|
|
|
TEMPORARY_ARRAY = [PIVOT] + longestSub(TEMPORARY_ARRAY)
|
|
|
|
if len(TEMPORARY_ARRAY) > len(LONGEST_SUB):
|
|
|
|
return TEMPORARY_ARRAY
|
|
|
|
else:
|
|
|
|
return LONGEST_SUB
|
|
|
|
|
|
|
|
|
|
|
|
# Some examples
|
|
|
|
|
|
|
|
print(longestSub([4, 8, 7, 5, 1, 12, 2, 3, 9]))
|
|
|
|
print(longestSub([9, 8, 7, 6, 5, 7]))
|