2019-10-19 17:11:05 +08:00
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
def runge_kutta(f, y0, x0, h, x_end):
|
|
|
|
"""
|
|
|
|
Calculate the numeric solution at each step to the ODE f(x, y) using RK4
|
|
|
|
|
|
|
|
https://en.wikipedia.org/wiki/Runge-Kutta_methods
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
f -- The ode as a function of x and y
|
|
|
|
y0 -- the initial value for y
|
|
|
|
x0 -- the initial value for x
|
|
|
|
h -- the stepsize
|
|
|
|
x_end -- the end value for x
|
|
|
|
|
|
|
|
>>> # the exact solution is math.exp(x)
|
|
|
|
>>> def f(x, y):
|
|
|
|
... return y
|
|
|
|
>>> y0 = 1
|
|
|
|
>>> y = runge_kutta(f, y0, 0.0, 0.01, 5)
|
|
|
|
>>> y[-1]
|
|
|
|
148.41315904125113
|
|
|
|
"""
|
2022-10-13 06:54:20 +08:00
|
|
|
n = int(np.ceil((x_end - x0) / h))
|
|
|
|
y = np.zeros((n + 1,))
|
2019-10-19 17:11:05 +08:00
|
|
|
y[0] = y0
|
|
|
|
x = x0
|
|
|
|
|
2022-10-13 06:54:20 +08:00
|
|
|
for k in range(n):
|
2019-10-19 17:11:05 +08:00
|
|
|
k1 = f(x, y[k])
|
2019-10-23 01:13:48 +08:00
|
|
|
k2 = f(x + 0.5 * h, y[k] + 0.5 * h * k1)
|
|
|
|
k3 = f(x + 0.5 * h, y[k] + 0.5 * h * k2)
|
2019-10-19 17:11:05 +08:00
|
|
|
k4 = f(x + h, y[k] + h * k3)
|
2019-10-23 01:13:48 +08:00
|
|
|
y[k + 1] = y[k] + (1 / 6) * h * (k1 + 2 * k2 + 2 * k3 + k4)
|
2019-10-19 17:11:05 +08:00
|
|
|
x += h
|
|
|
|
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
import doctest
|
|
|
|
|
|
|
|
doctest.testmod()
|