mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
392 lines
13 KiB
Python
392 lines
13 KiB
Python
|
import matplotlib.gridspec as gridspec
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
from sklearn.utils import shuffle
|
||
|
import input_data
|
||
|
|
||
|
random_numer = 42
|
||
|
|
||
|
np.random.seed(random_numer)
|
||
|
def ReLu(x):
|
||
|
mask = (x>0) * 1.0
|
||
|
return mask *x
|
||
|
def d_ReLu(x):
|
||
|
mask = (x>0) * 1.0
|
||
|
return mask
|
||
|
|
||
|
def arctan(x):
|
||
|
return np.arctan(x)
|
||
|
def d_arctan(x):
|
||
|
return 1 / (1 + x ** 2)
|
||
|
|
||
|
def log(x):
|
||
|
return 1 / ( 1+ np.exp(-1*x))
|
||
|
def d_log(x):
|
||
|
return log(x) * (1 - log(x))
|
||
|
|
||
|
def tanh(x):
|
||
|
return np.tanh(x)
|
||
|
def d_tanh(x):
|
||
|
return 1 - np.tanh(x) ** 2
|
||
|
|
||
|
def plot(samples):
|
||
|
fig = plt.figure(figsize=(4, 4))
|
||
|
gs = gridspec.GridSpec(4, 4)
|
||
|
gs.update(wspace=0.05, hspace=0.05)
|
||
|
|
||
|
for i, sample in enumerate(samples):
|
||
|
ax = plt.subplot(gs[i])
|
||
|
plt.axis('off')
|
||
|
ax.set_xticklabels([])
|
||
|
ax.set_yticklabels([])
|
||
|
ax.set_aspect('equal')
|
||
|
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
|
||
|
|
||
|
return fig
|
||
|
|
||
|
|
||
|
|
||
|
# 1. Load Data and declare hyper
|
||
|
print('--------- Load Data ----------')
|
||
|
mnist = input_data.read_data_sets('MNIST_data', one_hot=False)
|
||
|
temp = mnist.test
|
||
|
images, labels = temp.images, temp.labels
|
||
|
images, labels = shuffle(np.asarray(images),np.asarray(labels))
|
||
|
num_epoch = 10
|
||
|
learing_rate = 0.00009
|
||
|
G_input = 100
|
||
|
hidden_input,hidden_input2,hidden_input3 = 128,256,346
|
||
|
hidden_input4,hidden_input5,hidden_input6 = 480,560,686
|
||
|
|
||
|
|
||
|
|
||
|
print('--------- Declare Hyper Parameters ----------')
|
||
|
# 2. Declare Weights
|
||
|
D_W1 = np.random.normal(size=(784,hidden_input),scale=(1. / np.sqrt(784 / 2.))) *0.002
|
||
|
# D_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||
|
D_b1 = np.zeros(hidden_input)
|
||
|
|
||
|
D_W2 = np.random.normal(size=(hidden_input,1),scale=(1. / np.sqrt(hidden_input / 2.))) *0.002
|
||
|
# D_b2 = np.random.normal(size=(1),scale=(1. / np.sqrt(1 / 2.))) *0.002
|
||
|
D_b2 = np.zeros(1)
|
||
|
|
||
|
|
||
|
G_W1 = np.random.normal(size=(G_input,hidden_input),scale=(1. / np.sqrt(G_input / 2.))) *0.002
|
||
|
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||
|
G_b1 = np.zeros(hidden_input)
|
||
|
|
||
|
G_W2 = np.random.normal(size=(hidden_input,hidden_input2),scale=(1. / np.sqrt(hidden_input / 2.))) *0.002
|
||
|
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||
|
G_b2 = np.zeros(hidden_input2)
|
||
|
|
||
|
G_W3 = np.random.normal(size=(hidden_input2,hidden_input3),scale=(1. / np.sqrt(hidden_input2 / 2.))) *0.002
|
||
|
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||
|
G_b3 = np.zeros(hidden_input3)
|
||
|
|
||
|
G_W4 = np.random.normal(size=(hidden_input3,hidden_input4),scale=(1. / np.sqrt(hidden_input3 / 2.))) *0.002
|
||
|
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||
|
G_b4 = np.zeros(hidden_input4)
|
||
|
|
||
|
G_W5 = np.random.normal(size=(hidden_input4,hidden_input5),scale=(1. / np.sqrt(hidden_input4 / 2.))) *0.002
|
||
|
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||
|
G_b5 = np.zeros(hidden_input5)
|
||
|
|
||
|
G_W6 = np.random.normal(size=(hidden_input5,hidden_input6),scale=(1. / np.sqrt(hidden_input5 / 2.))) *0.002
|
||
|
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||
|
G_b6 = np.zeros(hidden_input6)
|
||
|
|
||
|
G_W7 = np.random.normal(size=(hidden_input6,784),scale=(1. / np.sqrt(hidden_input6 / 2.))) *0.002
|
||
|
# G_b2 = np.random.normal(size=(784),scale=(1. / np.sqrt(784 / 2.))) *0.002
|
||
|
G_b7 = np.zeros(784)
|
||
|
|
||
|
# 3. For Adam Optimzier
|
||
|
v1,m1 = 0,0
|
||
|
v2,m2 = 0,0
|
||
|
v3,m3 = 0,0
|
||
|
v4,m4 = 0,0
|
||
|
|
||
|
v5,m5 = 0,0
|
||
|
v6,m6 = 0,0
|
||
|
v7,m7 = 0,0
|
||
|
v8,m8 = 0,0
|
||
|
v9,m9 = 0,0
|
||
|
v10,m10 = 0,0
|
||
|
v11,m11 = 0,0
|
||
|
v12,m12 = 0,0
|
||
|
|
||
|
v13,m13 = 0,0
|
||
|
v14,m14 = 0,0
|
||
|
|
||
|
v15,m15 = 0,0
|
||
|
v16,m16 = 0,0
|
||
|
|
||
|
v17,m17 = 0,0
|
||
|
v18,m18 = 0,0
|
||
|
|
||
|
|
||
|
beta_1,beta_2,eps = 0.9,0.999,0.00000001
|
||
|
|
||
|
print('--------- Started Training ----------')
|
||
|
for iter in range(num_epoch):
|
||
|
|
||
|
random_int = np.random.randint(len(images) - 5)
|
||
|
current_image = np.expand_dims(images[random_int],axis=0)
|
||
|
|
||
|
# Func: Generate The first Fake Data
|
||
|
Z = np.random.uniform(-1., 1., size=[1, G_input])
|
||
|
Gl1 = Z.dot(G_W1) + G_b1
|
||
|
Gl1A = arctan(Gl1)
|
||
|
Gl2 = Gl1A.dot(G_W2) + G_b2
|
||
|
Gl2A = ReLu(Gl2)
|
||
|
Gl3 = Gl2A.dot(G_W3) + G_b3
|
||
|
Gl3A = arctan(Gl3)
|
||
|
|
||
|
Gl4 = Gl3A.dot(G_W4) + G_b4
|
||
|
Gl4A = ReLu(Gl4)
|
||
|
Gl5 = Gl4A.dot(G_W5) + G_b5
|
||
|
Gl5A = tanh(Gl5)
|
||
|
Gl6 = Gl5A.dot(G_W6) + G_b6
|
||
|
Gl6A = ReLu(Gl6)
|
||
|
Gl7 = Gl6A.dot(G_W7) + G_b7
|
||
|
|
||
|
current_fake_data = log(Gl7)
|
||
|
|
||
|
# Func: Forward Feed for Real data
|
||
|
Dl1_r = current_image.dot(D_W1) + D_b1
|
||
|
Dl1_rA = ReLu(Dl1_r)
|
||
|
Dl2_r = Dl1_rA.dot(D_W2) + D_b2
|
||
|
Dl2_rA = log(Dl2_r)
|
||
|
|
||
|
# Func: Forward Feed for Fake Data
|
||
|
Dl1_f = current_fake_data.dot(D_W1) + D_b1
|
||
|
Dl1_fA = ReLu(Dl1_f)
|
||
|
Dl2_f = Dl1_fA.dot(D_W2) + D_b2
|
||
|
Dl2_fA = log(Dl2_f)
|
||
|
|
||
|
# Func: Cost D
|
||
|
D_cost = -np.log(Dl2_rA) + np.log(1.0- Dl2_fA)
|
||
|
|
||
|
# Func: Gradient
|
||
|
grad_f_w2_part_1 = 1/(1.0- Dl2_fA)
|
||
|
grad_f_w2_part_2 = d_log(Dl2_f)
|
||
|
grad_f_w2_part_3 = Dl1_fA
|
||
|
grad_f_w2 = grad_f_w2_part_3.T.dot(grad_f_w2_part_1 * grad_f_w2_part_2)
|
||
|
grad_f_b2 = grad_f_w2_part_1 * grad_f_w2_part_2
|
||
|
|
||
|
grad_f_w1_part_1 = (grad_f_w2_part_1 * grad_f_w2_part_2).dot(D_W2.T)
|
||
|
grad_f_w1_part_2 = d_ReLu(Dl1_f)
|
||
|
grad_f_w1_part_3 = current_fake_data
|
||
|
grad_f_w1 = grad_f_w1_part_3.T.dot(grad_f_w1_part_1 * grad_f_w1_part_2)
|
||
|
grad_f_b1 = grad_f_w1_part_1 * grad_f_w1_part_2
|
||
|
|
||
|
grad_r_w2_part_1 = - 1/Dl2_rA
|
||
|
grad_r_w2_part_2 = d_log(Dl2_r)
|
||
|
grad_r_w2_part_3 = Dl1_rA
|
||
|
grad_r_w2 = grad_r_w2_part_3.T.dot(grad_r_w2_part_1 * grad_r_w2_part_2)
|
||
|
grad_r_b2 = grad_r_w2_part_1 * grad_r_w2_part_2
|
||
|
|
||
|
grad_r_w1_part_1 = (grad_r_w2_part_1 * grad_r_w2_part_2).dot(D_W2.T)
|
||
|
grad_r_w1_part_2 = d_ReLu(Dl1_r)
|
||
|
grad_r_w1_part_3 = current_image
|
||
|
grad_r_w1 = grad_r_w1_part_3.T.dot(grad_r_w1_part_1 * grad_r_w1_part_2)
|
||
|
grad_r_b1 = grad_r_w1_part_1 * grad_r_w1_part_2
|
||
|
|
||
|
grad_w1 =grad_f_w1 + grad_r_w1
|
||
|
grad_b1 =grad_f_b1 + grad_r_b1
|
||
|
|
||
|
grad_w2 =grad_f_w2 + grad_r_w2
|
||
|
grad_b2 =grad_f_b2 + grad_r_b2
|
||
|
|
||
|
# ---- Update Gradient ----
|
||
|
m1 = beta_1 * m1 + (1 - beta_1) * grad_w1
|
||
|
v1 = beta_2 * v1 + (1 - beta_2) * grad_w1 ** 2
|
||
|
|
||
|
m2 = beta_1 * m2 + (1 - beta_1) * grad_b1
|
||
|
v2 = beta_2 * v2 + (1 - beta_2) * grad_b1 ** 2
|
||
|
|
||
|
m3 = beta_1 * m3 + (1 - beta_1) * grad_w2
|
||
|
v3 = beta_2 * v3 + (1 - beta_2) * grad_w2 ** 2
|
||
|
|
||
|
m4 = beta_1 * m4 + (1 - beta_1) * grad_b2
|
||
|
v4 = beta_2 * v4 + (1 - beta_2) * grad_b2 ** 2
|
||
|
|
||
|
D_W1 = D_W1 - (learing_rate / (np.sqrt(v1 /(1-beta_2) ) + eps)) * (m1/(1-beta_1))
|
||
|
D_b1 = D_b1 - (learing_rate / (np.sqrt(v2 /(1-beta_2) ) + eps)) * (m2/(1-beta_1))
|
||
|
|
||
|
D_W2 = D_W2 - (learing_rate / (np.sqrt(v3 /(1-beta_2) ) + eps)) * (m3/(1-beta_1))
|
||
|
D_b2 = D_b2 - (learing_rate / (np.sqrt(v4 /(1-beta_2) ) + eps)) * (m4/(1-beta_1))
|
||
|
|
||
|
# Func: Forward Feed for G
|
||
|
Z = np.random.uniform(-1., 1., size=[1, G_input])
|
||
|
Gl1 = Z.dot(G_W1) + G_b1
|
||
|
Gl1A = arctan(Gl1)
|
||
|
Gl2 = Gl1A.dot(G_W2) + G_b2
|
||
|
Gl2A = ReLu(Gl2)
|
||
|
Gl3 = Gl2A.dot(G_W3) + G_b3
|
||
|
Gl3A = arctan(Gl3)
|
||
|
|
||
|
Gl4 = Gl3A.dot(G_W4) + G_b4
|
||
|
Gl4A = ReLu(Gl4)
|
||
|
Gl5 = Gl4A.dot(G_W5) + G_b5
|
||
|
Gl5A = tanh(Gl5)
|
||
|
Gl6 = Gl5A.dot(G_W6) + G_b6
|
||
|
Gl6A = ReLu(Gl6)
|
||
|
Gl7 = Gl6A.dot(G_W7) + G_b7
|
||
|
|
||
|
current_fake_data = log(Gl7)
|
||
|
|
||
|
Dl1 = current_fake_data.dot(D_W1) + D_b1
|
||
|
Dl1_A = ReLu(Dl1)
|
||
|
Dl2 = Dl1_A.dot(D_W2) + D_b2
|
||
|
Dl2_A = log(Dl2)
|
||
|
|
||
|
# Func: Cost G
|
||
|
G_cost = -np.log(Dl2_A)
|
||
|
|
||
|
# Func: Gradient
|
||
|
grad_G_w7_part_1 = ((-1/Dl2_A) * d_log(Dl2).dot(D_W2.T) * (d_ReLu(Dl1))).dot(D_W1.T)
|
||
|
grad_G_w7_part_2 = d_log(Gl7)
|
||
|
grad_G_w7_part_3 = Gl6A
|
||
|
grad_G_w7 = grad_G_w7_part_3.T.dot(grad_G_w7_part_1 * grad_G_w7_part_1)
|
||
|
grad_G_b7 = grad_G_w7_part_1 * grad_G_w7_part_2
|
||
|
|
||
|
grad_G_w6_part_1 = (grad_G_w7_part_1 * grad_G_w7_part_2).dot(G_W7.T)
|
||
|
grad_G_w6_part_2 = d_ReLu(Gl6)
|
||
|
grad_G_w6_part_3 = Gl5A
|
||
|
grad_G_w6 = grad_G_w6_part_3.T.dot(grad_G_w6_part_1 * grad_G_w6_part_2)
|
||
|
grad_G_b6 = (grad_G_w6_part_1 * grad_G_w6_part_2)
|
||
|
|
||
|
grad_G_w5_part_1 = (grad_G_w6_part_1 * grad_G_w6_part_2).dot(G_W6.T)
|
||
|
grad_G_w5_part_2 = d_tanh(Gl5)
|
||
|
grad_G_w5_part_3 = Gl4A
|
||
|
grad_G_w5 = grad_G_w5_part_3.T.dot(grad_G_w5_part_1 * grad_G_w5_part_2)
|
||
|
grad_G_b5 = (grad_G_w5_part_1 * grad_G_w5_part_2)
|
||
|
|
||
|
grad_G_w4_part_1 = (grad_G_w5_part_1 * grad_G_w5_part_2).dot(G_W5.T)
|
||
|
grad_G_w4_part_2 = d_ReLu(Gl4)
|
||
|
grad_G_w4_part_3 = Gl3A
|
||
|
grad_G_w4 = grad_G_w4_part_3.T.dot(grad_G_w4_part_1 * grad_G_w4_part_2)
|
||
|
grad_G_b4 = (grad_G_w4_part_1 * grad_G_w4_part_2)
|
||
|
|
||
|
grad_G_w3_part_1 = (grad_G_w4_part_1 * grad_G_w4_part_2).dot(G_W4.T)
|
||
|
grad_G_w3_part_2 = d_arctan(Gl3)
|
||
|
grad_G_w3_part_3 = Gl2A
|
||
|
grad_G_w3 = grad_G_w3_part_3.T.dot(grad_G_w3_part_1 * grad_G_w3_part_2)
|
||
|
grad_G_b3 = (grad_G_w3_part_1 * grad_G_w3_part_2)
|
||
|
|
||
|
grad_G_w2_part_1 = (grad_G_w3_part_1 * grad_G_w3_part_2).dot(G_W3.T)
|
||
|
grad_G_w2_part_2 = d_ReLu(Gl2)
|
||
|
grad_G_w2_part_3 = Gl1A
|
||
|
grad_G_w2 = grad_G_w2_part_3.T.dot(grad_G_w2_part_1 * grad_G_w2_part_2)
|
||
|
grad_G_b2 = (grad_G_w2_part_1 * grad_G_w2_part_2)
|
||
|
|
||
|
grad_G_w1_part_1 = (grad_G_w2_part_1 * grad_G_w2_part_2).dot(G_W2.T)
|
||
|
grad_G_w1_part_2 = d_arctan(Gl1)
|
||
|
grad_G_w1_part_3 = Z
|
||
|
grad_G_w1 = grad_G_w1_part_3.T.dot(grad_G_w1_part_1 * grad_G_w1_part_2)
|
||
|
grad_G_b1 = grad_G_w1_part_1 * grad_G_w1_part_2
|
||
|
|
||
|
# ---- Update Gradient ----
|
||
|
m5 = beta_1 * m5 + (1 - beta_1) * grad_G_w1
|
||
|
v5 = beta_2 * v5 + (1 - beta_2) * grad_G_w1 ** 2
|
||
|
|
||
|
m6 = beta_1 * m6 + (1 - beta_1) * grad_G_b1
|
||
|
v6 = beta_2 * v6 + (1 - beta_2) * grad_G_b1 ** 2
|
||
|
|
||
|
m7 = beta_1 * m7 + (1 - beta_1) * grad_G_w2
|
||
|
v7 = beta_2 * v7 + (1 - beta_2) * grad_G_w2 ** 2
|
||
|
|
||
|
m8 = beta_1 * m8 + (1 - beta_1) * grad_G_b2
|
||
|
v8 = beta_2 * v8 + (1 - beta_2) * grad_G_b2 ** 2
|
||
|
|
||
|
m9 = beta_1 * m9 + (1 - beta_1) * grad_G_w3
|
||
|
v9 = beta_2 * v9 + (1 - beta_2) * grad_G_w3 ** 2
|
||
|
|
||
|
m10 = beta_1 * m10 + (1 - beta_1) * grad_G_b3
|
||
|
v10 = beta_2 * v10 + (1 - beta_2) * grad_G_b3 ** 2
|
||
|
|
||
|
m11 = beta_1 * m11 + (1 - beta_1) * grad_G_w4
|
||
|
v11 = beta_2 * v11 + (1 - beta_2) * grad_G_w4 ** 2
|
||
|
|
||
|
m12 = beta_1 * m12 + (1 - beta_1) * grad_G_b4
|
||
|
v12 = beta_2 * v12 + (1 - beta_2) * grad_G_b4 ** 2
|
||
|
|
||
|
m13 = beta_1 * m13 + (1 - beta_1) * grad_G_w5
|
||
|
v13 = beta_2 * v13 + (1 - beta_2) * grad_G_w5 ** 2
|
||
|
|
||
|
m14 = beta_1 * m14 + (1 - beta_1) * grad_G_b5
|
||
|
v14 = beta_2 * v14 + (1 - beta_2) * grad_G_b5 ** 2
|
||
|
|
||
|
m15 = beta_1 * m15 + (1 - beta_1) * grad_G_w6
|
||
|
v15 = beta_2 * v15 + (1 - beta_2) * grad_G_w6 ** 2
|
||
|
|
||
|
m16 = beta_1 * m16 + (1 - beta_1) * grad_G_b6
|
||
|
v16 = beta_2 * v16 + (1 - beta_2) * grad_G_b6 ** 2
|
||
|
|
||
|
m17 = beta_1 * m17 + (1 - beta_1) * grad_G_w7
|
||
|
v17 = beta_2 * v17 + (1 - beta_2) * grad_G_w7 ** 2
|
||
|
|
||
|
m18 = beta_1 * m18 + (1 - beta_1) * grad_G_b7
|
||
|
v18 = beta_2 * v18 + (1 - beta_2) * grad_G_b7 ** 2
|
||
|
|
||
|
G_W1 = G_W1 - (learing_rate / (np.sqrt(v5 /(1-beta_2) ) + eps)) * (m5/(1-beta_1))
|
||
|
G_b1 = G_b1 - (learing_rate / (np.sqrt(v6 /(1-beta_2) ) + eps)) * (m6/(1-beta_1))
|
||
|
|
||
|
G_W2 = G_W2 - (learing_rate / (np.sqrt(v7 /(1-beta_2) ) + eps)) * (m7/(1-beta_1))
|
||
|
G_b2 = G_b2 - (learing_rate / (np.sqrt(v8 /(1-beta_2) ) + eps)) * (m8/(1-beta_1))
|
||
|
|
||
|
G_W3 = G_W3 - (learing_rate / (np.sqrt(v9 /(1-beta_2) ) + eps)) * (m9/(1-beta_1))
|
||
|
G_b3 = G_b3 - (learing_rate / (np.sqrt(v10 /(1-beta_2) ) + eps)) * (m10/(1-beta_1))
|
||
|
|
||
|
G_W4 = G_W4 - (learing_rate / (np.sqrt(v11 /(1-beta_2) ) + eps)) * (m11/(1-beta_1))
|
||
|
G_b4 = G_b4 - (learing_rate / (np.sqrt(v12 /(1-beta_2) ) + eps)) * (m12/(1-beta_1))
|
||
|
|
||
|
G_W5 = G_W5 - (learing_rate / (np.sqrt(v13 /(1-beta_2) ) + eps)) * (m13/(1-beta_1))
|
||
|
G_b5 = G_b5 - (learing_rate / (np.sqrt(v14 /(1-beta_2) ) + eps)) * (m14/(1-beta_1))
|
||
|
|
||
|
G_W6 = G_W6 - (learing_rate / (np.sqrt(v15 /(1-beta_2) ) + eps)) * (m15/(1-beta_1))
|
||
|
G_b6 = G_b6 - (learing_rate / (np.sqrt(v16 /(1-beta_2) ) + eps)) * (m16/(1-beta_1))
|
||
|
|
||
|
G_W7 = G_W7 - (learing_rate / (np.sqrt(v17 /(1-beta_2) ) + eps)) * (m17/(1-beta_1))
|
||
|
G_b7 = G_b7 - (learing_rate / (np.sqrt(v18 /(1-beta_2) ) + eps)) * (m18/(1-beta_1))
|
||
|
|
||
|
# --- Print Error ----
|
||
|
#print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r')
|
||
|
|
||
|
if iter == 0:
|
||
|
learing_rate = learing_rate * 0.01
|
||
|
if iter == 40:
|
||
|
learing_rate = learing_rate * 0.01
|
||
|
|
||
|
# ---- Print to Out put ----
|
||
|
if iter%10 == 0:
|
||
|
|
||
|
print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r')
|
||
|
print('--------- Show Example Result See Tab Above ----------')
|
||
|
print('--------- Wait for the image to load ---------')
|
||
|
Z = np.random.uniform(-1., 1., size=[16, G_input])
|
||
|
|
||
|
Gl1 = Z.dot(G_W1) + G_b1
|
||
|
Gl1A = arctan(Gl1)
|
||
|
Gl2 = Gl1A.dot(G_W2) + G_b2
|
||
|
Gl2A = ReLu(Gl2)
|
||
|
Gl3 = Gl2A.dot(G_W3) + G_b3
|
||
|
Gl3A = arctan(Gl3)
|
||
|
|
||
|
Gl4 = Gl3A.dot(G_W4) + G_b4
|
||
|
Gl4A = ReLu(Gl4)
|
||
|
Gl5 = Gl4A.dot(G_W5) + G_b5
|
||
|
Gl5A = tanh(Gl5)
|
||
|
Gl6 = Gl5A.dot(G_W6) + G_b6
|
||
|
Gl6A = ReLu(Gl6)
|
||
|
Gl7 = Gl6A.dot(G_W7) + G_b7
|
||
|
|
||
|
current_fake_data = log(Gl7)
|
||
|
|
||
|
fig = plot(current_fake_data)
|
||
|
fig.savefig('Click_Me_{}.png'.format(str(iter).zfill(3)+"_Ginput_"+str(G_input)+ \
|
||
|
"_hiddenone"+str(hidden_input) + "_hiddentwo"+str(hidden_input2) + "_LR_" + str(learing_rate)
|
||
|
), bbox_inches='tight')
|
||
|
#for complete explanation visit https://towardsdatascience.com/only-numpy-implementing-gan-general-adversarial-networks-and-adam-optimizer-using-numpy-with-2a7e4e032021
|
||
|
# -- end code --
|