mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
74 lines
1.5 KiB
Python
74 lines
1.5 KiB
Python
|
"""
|
||
|
https://en.wikipedia.org/wiki/Component_(graph_theory)
|
||
|
|
||
|
Finding connected components in graph
|
||
|
|
||
|
"""
|
||
|
|
||
|
test_graph_1 = {
|
||
|
0: [1, 2],
|
||
|
1: [0, 3],
|
||
|
2: [0],
|
||
|
3: [1],
|
||
|
4: [5, 6],
|
||
|
5: [4, 6],
|
||
|
6: [4, 5],
|
||
|
}
|
||
|
|
||
|
test_graph_2 = {
|
||
|
0: [1, 2, 3],
|
||
|
1: [0, 3],
|
||
|
2: [0],
|
||
|
3: [0, 1],
|
||
|
4: [],
|
||
|
5: [],
|
||
|
}
|
||
|
|
||
|
|
||
|
def dfs(graph: dict, vert: int, visited: list) -> list:
|
||
|
"""
|
||
|
Use depth first search to find all vertexes
|
||
|
being in the same component as initial vertex
|
||
|
>>> dfs(test_graph_1, 0, 5 * [False])
|
||
|
[0, 1, 3, 2]
|
||
|
>>> dfs(test_graph_2, 0, 6 * [False])
|
||
|
[0, 1, 3, 2]
|
||
|
"""
|
||
|
|
||
|
visited[vert] = True
|
||
|
connected_verts = []
|
||
|
|
||
|
for neighbour in graph[vert]:
|
||
|
if not visited[neighbour]:
|
||
|
connected_verts += dfs(graph, neighbour, visited)
|
||
|
|
||
|
return [vert] + connected_verts
|
||
|
|
||
|
|
||
|
def connected_components(graph: dict) -> list:
|
||
|
"""
|
||
|
This function takes graph as a parameter
|
||
|
and then returns the list of connected components
|
||
|
>>> connected_components(test_graph_1)
|
||
|
[[0, 1, 3, 2], [4, 5, 6]]
|
||
|
>>> connected_components(test_graph_2)
|
||
|
[[0, 1, 3, 2], [4], [5]]
|
||
|
"""
|
||
|
|
||
|
graph_size = len(graph)
|
||
|
visited = graph_size * [False]
|
||
|
components_list = []
|
||
|
|
||
|
for i in range(graph_size):
|
||
|
if not visited[i]:
|
||
|
i_connected = dfs(graph, i, visited)
|
||
|
components_list.append(i_connected)
|
||
|
|
||
|
return components_list
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import doctest
|
||
|
|
||
|
doctest.testmod()
|