TheAlgorithms-Python/maths/carmichael_number.py

84 lines
1.8 KiB
Python
Raw Normal View History

"""
== Carmichael Numbers ==
A number n is said to be a Carmichael number if it
satisfies the following modular arithmetic condition:
power(b, n-1) MOD n = 1,
for all b ranging from 1 to n such that b and
n are relatively prime, i.e, gcd(b, n) = 1
Examples of Carmichael Numbers: 561, 1105, ...
https://en.wikipedia.org/wiki/Carmichael_number
"""
from maths.greatest_common_divisor import greatest_common_divisor
def power(x: int, y: int, mod: int) -> int:
"""
Examples:
>>> power(2, 15, 3)
2
>>> power(5, 1, 30)
5
"""
if y == 0:
return 1
temp = power(x, y // 2, mod) % mod
temp = (temp * temp) % mod
if y % 2 == 1:
temp = (temp * x) % mod
return temp
def is_carmichael_number(n: int) -> bool:
"""
Examples:
>>> is_carmichael_number(562)
False
>>> is_carmichael_number(561)
True
>>> is_carmichael_number(5.1)
Traceback (most recent call last):
...
ValueError: Number 5.1 must instead be a positive integer
>>> is_carmichael_number(-7)
Traceback (most recent call last):
...
ValueError: Number -7 must instead be a positive integer
>>> is_carmichael_number(0)
Traceback (most recent call last):
...
ValueError: Number 0 must instead be a positive integer
"""
if n <= 0 or not isinstance(n, int):
msg = f"Number {n} must instead be a positive integer"
raise ValueError(msg)
return all(
power(b, n - 1, n) == 1
for b in range(2, n)
if greatest_common_divisor(b, n) == 1
)
if __name__ == "__main__":
import doctest
doctest.testmod()
number = int(input("Enter number: ").strip())
if is_carmichael_number(number):
print(f"{number} is a Carmichael Number.")
else:
print(f"{number} is not a Carmichael Number.")