TheAlgorithms-Python/project_euler/problem_018/solution.py

59 lines
1.3 KiB
Python
Raw Normal View History

2019-10-04 04:47:08 +08:00
"""
By starting at the top of the triangle below and moving to adjacent numbers on
the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
"""
import os
def solution():
"""
Finds the maximum total in a triangle as described by the problem statement
above.
>>> solution()
1074
"""
script_dir = os.path.dirname(os.path.realpath(__file__))
2019-10-05 13:14:13 +08:00
triangle = os.path.join(script_dir, "triangle.txt")
2019-10-04 04:47:08 +08:00
with open(triangle) as f:
2019-10-04 04:47:08 +08:00
triangle = f.readlines()
2019-10-05 13:14:13 +08:00
a = [[int(y) for y in x.rstrip("\r\n").split(" ")] for x in triangle]
2019-10-04 04:47:08 +08:00
for i in range(1, len(a)):
for j in range(len(a[i])):
number1 = a[i - 1][j] if j != len(a[i - 1]) else 0
number2 = a[i - 1][j - 1] if j > 0 else 0
2019-10-04 04:47:08 +08:00
a[i][j] += max(number1, number2)
return max(a[-1])
if __name__ == "__main__":
print(solution())