TheAlgorithms-Python/data_structures/hashing/double_hash.py

53 lines
1.9 KiB
Python
Raw Normal View History

2018-03-21 07:48:58 +08:00
#!/usr/bin/env python3
"""
Double hashing is a collision resolving technique in Open Addressed Hash tables.
Double hashing uses the idea of applying a second hash function to key when a collision
occurs. The advantage of Double hashing is that it is one of the best form of probing,
producing a uniform distribution of records throughout a hash table. This technique
does not yield any clusters. It is one of effective method for resolving collisions.
Double hashing can be done using: (hash1(key) + i * hash2(key)) % TABLE_SIZE
Where hash1() and hash2() are hash functions and TABLE_SIZE is size of hash table.
Reference: https://en.wikipedia.org/wiki/Double_hashing
"""
from .hash_table import HashTable
from .number_theory.prime_numbers import is_prime, next_prime
2018-03-21 07:48:58 +08:00
class DoubleHash(HashTable):
"""
Hash Table example with open addressing and Double Hash
2018-03-21 07:48:58 +08:00
"""
2019-10-05 13:14:13 +08:00
2018-03-21 07:48:58 +08:00
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __hash_function_2(self, value, data):
2019-10-05 13:14:13 +08:00
next_prime_gt = (
next_prime(value % self.size_table)
if not is_prime(value % self.size_table)
2019-10-05 13:14:13 +08:00
else value % self.size_table
) # gt = bigger than
2018-03-21 07:48:58 +08:00
return next_prime_gt - (data % next_prime_gt)
def __hash_double_function(self, key, data, increment):
return (increment * self.__hash_function_2(key, data)) % self.size_table
def _collision_resolution(self, key, data=None):
2018-03-21 07:48:58 +08:00
i = 1
new_key = self.hash_function(data)
while self.values[new_key] is not None and self.values[new_key] != key:
2019-10-05 13:14:13 +08:00
new_key = (
self.__hash_double_function(key, data, i)
if self.balanced_factor() >= self.lim_charge
else None
)
if new_key is None:
break
else:
i += 1
2018-03-21 07:48:58 +08:00
return new_key