TheAlgorithms-Python/bit_manipulation/binary_shifts.py

112 lines
3.4 KiB
Python
Raw Normal View History

# Information on binary shifts:
# https://docs.python.org/3/library/stdtypes.html#bitwise-operations-on-integer-types
# https://www.interviewcake.com/concept/java/bit-shift
def logical_left_shift(number: int, shift_amount: int) -> str:
"""
Take in 2 positive integers.
'number' is the integer to be logically left shifted 'shift_amount' times.
i.e. (number << shift_amount)
Return the shifted binary representation.
>>> logical_left_shift(0, 1)
'0b00'
>>> logical_left_shift(1, 1)
'0b10'
>>> logical_left_shift(1, 5)
'0b100000'
>>> logical_left_shift(17, 2)
'0b1000100'
>>> logical_left_shift(1983, 4)
'0b111101111110000'
>>> logical_left_shift(1, -1)
Traceback (most recent call last):
...
ValueError: both inputs must be positive integers
"""
if number < 0 or shift_amount < 0:
raise ValueError("both inputs must be positive integers")
binary_number = str(bin(number))
binary_number += "0" * shift_amount
return binary_number
def logical_right_shift(number: int, shift_amount: int) -> str:
"""
Take in positive 2 integers.
'number' is the integer to be logically right shifted 'shift_amount' times.
i.e. (number >>> shift_amount)
Return the shifted binary representation.
>>> logical_right_shift(0, 1)
'0b0'
>>> logical_right_shift(1, 1)
'0b0'
>>> logical_right_shift(1, 5)
'0b0'
>>> logical_right_shift(17, 2)
'0b100'
>>> logical_right_shift(1983, 4)
'0b1111011'
>>> logical_right_shift(1, -1)
Traceback (most recent call last):
...
ValueError: both inputs must be positive integers
"""
if number < 0 or shift_amount < 0:
raise ValueError("both inputs must be positive integers")
binary_number = str(bin(number))[2:]
if shift_amount >= len(binary_number):
return "0b0"
shifted_binary_number = binary_number[: len(binary_number) - shift_amount]
return "0b" + shifted_binary_number
def arithmetic_right_shift(number: int, shift_amount: int) -> str:
"""
Take in 2 integers.
'number' is the integer to be arithmetically right shifted 'shift_amount' times.
i.e. (number >> shift_amount)
Return the shifted binary representation.
>>> arithmetic_right_shift(0, 1)
'0b00'
>>> arithmetic_right_shift(1, 1)
'0b00'
>>> arithmetic_right_shift(-1, 1)
'0b11'
>>> arithmetic_right_shift(17, 2)
'0b000100'
>>> arithmetic_right_shift(-17, 2)
'0b111011'
>>> arithmetic_right_shift(-1983, 4)
'0b111110000100'
"""
if number >= 0: # Get binary representation of positive number
binary_number = "0" + str(bin(number)).strip("-")[2:]
else: # Get binary (2's complement) representation of negative number
binary_number_length = len(bin(number)[3:]) # Find 2's complement of number
binary_number = bin(abs(number) - (1 << binary_number_length))[3:]
binary_number = (
("1" + "0" * (binary_number_length - len(binary_number)) + binary_number)
if number < 0
else "0"
)
if shift_amount >= len(binary_number):
return "0b" + binary_number[0] * len(binary_number)
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(binary_number) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()