TheAlgorithms-Python/machine_learning/knn_sklearn.py

32 lines
724 B
Python
Raw Normal View History

from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
2019-10-05 13:14:13 +08:00
# Load iris file
iris = load_iris()
iris.keys()
2019-10-05 13:14:13 +08:00
print("Target names: \n {} ".format(iris.target_names))
print("\n Features: \n {}".format(iris.feature_names))
2019-10-05 13:14:13 +08:00
# Train set e Test set
X_train, X_test, y_train, y_test = train_test_split(
iris["data"], iris["target"], random_state=4
)
2019-10-05 13:14:13 +08:00
# KNN
2019-10-05 13:14:13 +08:00
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train, y_train)
2019-10-05 13:14:13 +08:00
# new array to test
X_new = [[1, 2, 1, 4], [2, 3, 4, 5]]
prediction = knn.predict(X_new)
2019-10-05 13:14:13 +08:00
print(
"\nNew array: \n {}"
"\n\nTarget Names Prediction: \n {}".format(X_new, iris["target_names"][prediction])
)