2018-10-17 02:52:44 +08:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# coding: utf-8
|
|
|
|
|
|
|
|
# # Logistic Regression from scratch
|
|
|
|
|
|
|
|
# In[62]:
|
|
|
|
|
|
|
|
|
|
|
|
''' Implementing logistic regression for classification problem
|
|
|
|
Helpful resources : 1.Coursera ML course 2.https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac'''
|
|
|
|
|
|
|
|
|
|
|
|
# In[63]:
|
|
|
|
|
|
|
|
|
|
|
|
#importing all the required libraries
|
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
get_ipython().run_line_magic('matplotlib', 'inline')
|
|
|
|
from sklearn import datasets
|
|
|
|
|
|
|
|
|
|
|
|
# In[67]:
|
|
|
|
|
|
|
|
|
|
|
|
#sigmoid function or logistic function is used as a hypothesis function in classification problems
|
|
|
|
def sigmoid_function(z):
|
|
|
|
return 1/(1+np.exp(-z))
|
|
|
|
|
|
|
|
|
|
|
|
def cost_function(h,y):
|
|
|
|
return (-y*np.log(h)-(1-y)*np.log(1-h)).mean()
|
|
|
|
|
2018-10-17 03:22:32 +08:00
|
|
|
# here alpha is the learning rate, X is the feature matrix,y is the target matrix
|
2018-10-17 02:52:44 +08:00
|
|
|
def logistic_reg(alpha,X,y,max_iterations=70000):
|
|
|
|
converged=False
|
|
|
|
iterations=0
|
|
|
|
theta=np.zeros(X.shape[1])
|
|
|
|
|
2018-10-17 03:22:32 +08:00
|
|
|
|
2018-10-17 02:52:44 +08:00
|
|
|
while not converged:
|
|
|
|
z=np.dot(X,theta)
|
|
|
|
h=sigmoid_function(z)
|
|
|
|
gradient = np.dot(X.T,(h-y))/y.size
|
|
|
|
theta=theta-(alpha)*gradient
|
|
|
|
|
|
|
|
z=np.dot(X,theta)
|
|
|
|
h=sigmoid_function(z)
|
2018-10-17 03:22:32 +08:00
|
|
|
J=cost_function(h,y)
|
|
|
|
|
|
|
|
|
2018-10-17 02:52:44 +08:00
|
|
|
|
|
|
|
iterations+=1 #update iterations
|
|
|
|
|
|
|
|
|
|
|
|
if iterations== max_iterations:
|
|
|
|
print("Maximum iterations exceeded!")
|
|
|
|
converged=True
|
|
|
|
|
|
|
|
return theta
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# In[68]:
|
|
|
|
|
|
|
|
|
|
|
|
if __name__=='__main__':
|
|
|
|
iris=datasets.load_iris()
|
|
|
|
X = iris.data[:, :2]
|
|
|
|
y = (iris.target != 0) * 1
|
|
|
|
|
|
|
|
alpha=0.1
|
|
|
|
theta=logistic_reg(alpha,X,y,max_iterations=70000)
|
|
|
|
print(theta)
|
|
|
|
def predict_prob(X):
|
|
|
|
return sigmoid_function(np.dot(X,theta)) # predicting the value of probability from the logistic regression algorithm
|
|
|
|
|
|
|
|
|
|
|
|
plt.figure(figsize=(10, 6))
|
|
|
|
plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='b', label='0')
|
|
|
|
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='r', label='1')
|
|
|
|
x1_min, x1_max = X[:,0].min(), X[:,0].max(),
|
|
|
|
x2_min, x2_max = X[:,1].min(), X[:,1].max(),
|
|
|
|
xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))
|
|
|
|
grid = np.c_[xx1.ravel(), xx2.ravel()]
|
|
|
|
probs = predict_prob(grid).reshape(xx1.shape)
|
|
|
|
plt.contour(xx1, xx2, probs, [0.5], linewidths=1, colors='black');
|
|
|
|
|
|
|
|
plt.legend();
|
|
|
|
|
|
|
|
|
|
|
|
|