2020-05-04 04:48:16 +08:00
|
|
|
"""
|
|
|
|
Euler Problem 26
|
|
|
|
https://projecteuler.net/problem=26
|
|
|
|
Find the value of d < 1000 for which 1/d contains the longest recurring cycle
|
|
|
|
in its decimal fraction part.
|
|
|
|
"""
|
|
|
|
|
2020-05-06 09:32:40 +08:00
|
|
|
|
2020-05-04 04:48:16 +08:00
|
|
|
def find_digit(numerator: int, digit: int) -> int:
|
|
|
|
"""
|
|
|
|
Considering any range can be provided,
|
|
|
|
because as per the problem, the digit d < 1000
|
|
|
|
>>> find_digit(1, 10)
|
|
|
|
7
|
|
|
|
>>> find_digit(10, 100)
|
|
|
|
97
|
|
|
|
>>> find_digit(10, 1000)
|
|
|
|
983
|
|
|
|
"""
|
|
|
|
the_digit = 1
|
|
|
|
longest_list_length = 0
|
|
|
|
|
|
|
|
for divide_by_number in range(numerator, digit + 1):
|
|
|
|
has_been_divided = []
|
|
|
|
now_divide = numerator
|
|
|
|
for division_cycle in range(1, digit + 1):
|
|
|
|
if now_divide in has_been_divided:
|
|
|
|
if longest_list_length < len(has_been_divided):
|
|
|
|
longest_list_length = len(has_been_divided)
|
|
|
|
the_digit = divide_by_number
|
|
|
|
else:
|
|
|
|
has_been_divided.append(now_divide)
|
|
|
|
now_divide = now_divide * 10 % divide_by_number
|
|
|
|
|
|
|
|
return the_digit
|
|
|
|
|
|
|
|
|
|
|
|
# Tests
|
|
|
|
if __name__ == "__main__":
|
|
|
|
import doctest
|
|
|
|
|
|
|
|
doctest.testmod()
|