mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
333 lines
12 KiB
Python
333 lines
12 KiB
Python
|
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Functions for downloading and reading MNIST data (deprecated).
|
||
|
|
||
|
This module and all its submodules are deprecated.
|
||
|
"""
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import collections
|
||
|
import gzip
|
||
|
import os
|
||
|
|
||
|
import numpy
|
||
|
from six.moves import urllib
|
||
|
from six.moves import xrange # pylint: disable=redefined-builtin
|
||
|
|
||
|
from tensorflow.python.framework import dtypes
|
||
|
from tensorflow.python.framework import random_seed
|
||
|
from tensorflow.python.platform import gfile
|
||
|
from tensorflow.python.util.deprecation import deprecated
|
||
|
|
||
|
_Datasets = collections.namedtuple('_Datasets', ['train', 'validation', 'test'])
|
||
|
|
||
|
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
|
||
|
DEFAULT_SOURCE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/'
|
||
|
|
||
|
|
||
|
def _read32(bytestream):
|
||
|
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
|
||
|
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
|
||
|
|
||
|
|
||
|
@deprecated(None, 'Please use tf.data to implement this functionality.')
|
||
|
def _extract_images(f):
|
||
|
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth].
|
||
|
|
||
|
Args:
|
||
|
f: A file object that can be passed into a gzip reader.
|
||
|
|
||
|
Returns:
|
||
|
data: A 4D uint8 numpy array [index, y, x, depth].
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If the bytestream does not start with 2051.
|
||
|
|
||
|
"""
|
||
|
print('Extracting', f.name)
|
||
|
with gzip.GzipFile(fileobj=f) as bytestream:
|
||
|
magic = _read32(bytestream)
|
||
|
if magic != 2051:
|
||
|
raise ValueError('Invalid magic number %d in MNIST image file: %s' %
|
||
|
(magic, f.name))
|
||
|
num_images = _read32(bytestream)
|
||
|
rows = _read32(bytestream)
|
||
|
cols = _read32(bytestream)
|
||
|
buf = bytestream.read(rows * cols * num_images)
|
||
|
data = numpy.frombuffer(buf, dtype=numpy.uint8)
|
||
|
data = data.reshape(num_images, rows, cols, 1)
|
||
|
return data
|
||
|
|
||
|
|
||
|
@deprecated(None, 'Please use tf.one_hot on tensors.')
|
||
|
def _dense_to_one_hot(labels_dense, num_classes):
|
||
|
"""Convert class labels from scalars to one-hot vectors."""
|
||
|
num_labels = labels_dense.shape[0]
|
||
|
index_offset = numpy.arange(num_labels) * num_classes
|
||
|
labels_one_hot = numpy.zeros((num_labels, num_classes))
|
||
|
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
|
||
|
return labels_one_hot
|
||
|
|
||
|
|
||
|
@deprecated(None, 'Please use tf.data to implement this functionality.')
|
||
|
def _extract_labels(f, one_hot=False, num_classes=10):
|
||
|
"""Extract the labels into a 1D uint8 numpy array [index].
|
||
|
|
||
|
Args:
|
||
|
f: A file object that can be passed into a gzip reader.
|
||
|
one_hot: Does one hot encoding for the result.
|
||
|
num_classes: Number of classes for the one hot encoding.
|
||
|
|
||
|
Returns:
|
||
|
labels: a 1D uint8 numpy array.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If the bystream doesn't start with 2049.
|
||
|
"""
|
||
|
print('Extracting', f.name)
|
||
|
with gzip.GzipFile(fileobj=f) as bytestream:
|
||
|
magic = _read32(bytestream)
|
||
|
if magic != 2049:
|
||
|
raise ValueError('Invalid magic number %d in MNIST label file: %s' %
|
||
|
(magic, f.name))
|
||
|
num_items = _read32(bytestream)
|
||
|
buf = bytestream.read(num_items)
|
||
|
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
|
||
|
if one_hot:
|
||
|
return _dense_to_one_hot(labels, num_classes)
|
||
|
return labels
|
||
|
|
||
|
|
||
|
class _DataSet(object):
|
||
|
"""Container class for a _DataSet (deprecated).
|
||
|
|
||
|
THIS CLASS IS DEPRECATED.
|
||
|
"""
|
||
|
|
||
|
@deprecated(None, 'Please use alternatives such as official/mnist/_DataSet.py'
|
||
|
' from tensorflow/models.')
|
||
|
def __init__(self,
|
||
|
images,
|
||
|
labels,
|
||
|
fake_data=False,
|
||
|
one_hot=False,
|
||
|
dtype=dtypes.float32,
|
||
|
reshape=True,
|
||
|
seed=None):
|
||
|
"""Construct a _DataSet.
|
||
|
|
||
|
one_hot arg is used only if fake_data is true. `dtype` can be either
|
||
|
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
|
||
|
`[0, 1]`. Seed arg provides for convenient deterministic testing.
|
||
|
|
||
|
Args:
|
||
|
images: The images
|
||
|
labels: The labels
|
||
|
fake_data: Ignore inages and labels, use fake data.
|
||
|
one_hot: Bool, return the labels as one hot vectors (if True) or ints (if
|
||
|
False).
|
||
|
dtype: Output image dtype. One of [uint8, float32]. `uint8` output has
|
||
|
range [0,255]. float32 output has range [0,1].
|
||
|
reshape: Bool. If True returned images are returned flattened to vectors.
|
||
|
seed: The random seed to use.
|
||
|
"""
|
||
|
seed1, seed2 = random_seed.get_seed(seed)
|
||
|
# If op level seed is not set, use whatever graph level seed is returned
|
||
|
numpy.random.seed(seed1 if seed is None else seed2)
|
||
|
dtype = dtypes.as_dtype(dtype).base_dtype
|
||
|
if dtype not in (dtypes.uint8, dtypes.float32):
|
||
|
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
|
||
|
dtype)
|
||
|
if fake_data:
|
||
|
self._num_examples = 10000
|
||
|
self.one_hot = one_hot
|
||
|
else:
|
||
|
assert images.shape[0] == labels.shape[0], (
|
||
|
'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
|
||
|
self._num_examples = images.shape[0]
|
||
|
|
||
|
# Convert shape from [num examples, rows, columns, depth]
|
||
|
# to [num examples, rows*columns] (assuming depth == 1)
|
||
|
if reshape:
|
||
|
assert images.shape[3] == 1
|
||
|
images = images.reshape(images.shape[0],
|
||
|
images.shape[1] * images.shape[2])
|
||
|
if dtype == dtypes.float32:
|
||
|
# Convert from [0, 255] -> [0.0, 1.0].
|
||
|
images = images.astype(numpy.float32)
|
||
|
images = numpy.multiply(images, 1.0 / 255.0)
|
||
|
self._images = images
|
||
|
self._labels = labels
|
||
|
self._epochs_completed = 0
|
||
|
self._index_in_epoch = 0
|
||
|
|
||
|
@property
|
||
|
def images(self):
|
||
|
return self._images
|
||
|
|
||
|
@property
|
||
|
def labels(self):
|
||
|
return self._labels
|
||
|
|
||
|
@property
|
||
|
def num_examples(self):
|
||
|
return self._num_examples
|
||
|
|
||
|
@property
|
||
|
def epochs_completed(self):
|
||
|
return self._epochs_completed
|
||
|
|
||
|
def next_batch(self, batch_size, fake_data=False, shuffle=True):
|
||
|
"""Return the next `batch_size` examples from this data set."""
|
||
|
if fake_data:
|
||
|
fake_image = [1] * 784
|
||
|
if self.one_hot:
|
||
|
fake_label = [1] + [0] * 9
|
||
|
else:
|
||
|
fake_label = 0
|
||
|
return [fake_image for _ in xrange(batch_size)
|
||
|
], [fake_label for _ in xrange(batch_size)]
|
||
|
start = self._index_in_epoch
|
||
|
# Shuffle for the first epoch
|
||
|
if self._epochs_completed == 0 and start == 0 and shuffle:
|
||
|
perm0 = numpy.arange(self._num_examples)
|
||
|
numpy.random.shuffle(perm0)
|
||
|
self._images = self.images[perm0]
|
||
|
self._labels = self.labels[perm0]
|
||
|
# Go to the next epoch
|
||
|
if start + batch_size > self._num_examples:
|
||
|
# Finished epoch
|
||
|
self._epochs_completed += 1
|
||
|
# Get the rest examples in this epoch
|
||
|
rest_num_examples = self._num_examples - start
|
||
|
images_rest_part = self._images[start:self._num_examples]
|
||
|
labels_rest_part = self._labels[start:self._num_examples]
|
||
|
# Shuffle the data
|
||
|
if shuffle:
|
||
|
perm = numpy.arange(self._num_examples)
|
||
|
numpy.random.shuffle(perm)
|
||
|
self._images = self.images[perm]
|
||
|
self._labels = self.labels[perm]
|
||
|
# Start next epoch
|
||
|
start = 0
|
||
|
self._index_in_epoch = batch_size - rest_num_examples
|
||
|
end = self._index_in_epoch
|
||
|
images_new_part = self._images[start:end]
|
||
|
labels_new_part = self._labels[start:end]
|
||
|
return numpy.concatenate((images_rest_part, images_new_part),
|
||
|
axis=0), numpy.concatenate(
|
||
|
(labels_rest_part, labels_new_part), axis=0)
|
||
|
else:
|
||
|
self._index_in_epoch += batch_size
|
||
|
end = self._index_in_epoch
|
||
|
return self._images[start:end], self._labels[start:end]
|
||
|
|
||
|
|
||
|
@deprecated(None, 'Please write your own downloading logic.')
|
||
|
def _maybe_download(filename, work_directory, source_url):
|
||
|
"""Download the data from source url, unless it's already here.
|
||
|
|
||
|
Args:
|
||
|
filename: string, name of the file in the directory.
|
||
|
work_directory: string, path to working directory.
|
||
|
source_url: url to download from if file doesn't exist.
|
||
|
|
||
|
Returns:
|
||
|
Path to resulting file.
|
||
|
"""
|
||
|
if not gfile.Exists(work_directory):
|
||
|
gfile.MakeDirs(work_directory)
|
||
|
filepath = os.path.join(work_directory, filename)
|
||
|
if not gfile.Exists(filepath):
|
||
|
urllib.request.urlretrieve(source_url, filepath)
|
||
|
with gfile.GFile(filepath) as f:
|
||
|
size = f.size()
|
||
|
print('Successfully downloaded', filename, size, 'bytes.')
|
||
|
return filepath
|
||
|
|
||
|
|
||
|
@deprecated(None, 'Please use alternatives such as:'
|
||
|
' tensorflow_datasets.load(\'mnist\')')
|
||
|
def read_data_sets(train_dir,
|
||
|
fake_data=False,
|
||
|
one_hot=False,
|
||
|
dtype=dtypes.float32,
|
||
|
reshape=True,
|
||
|
validation_size=5000,
|
||
|
seed=None,
|
||
|
source_url=DEFAULT_SOURCE_URL):
|
||
|
if fake_data:
|
||
|
|
||
|
def fake():
|
||
|
return _DataSet([], [],
|
||
|
fake_data=True,
|
||
|
one_hot=one_hot,
|
||
|
dtype=dtype,
|
||
|
seed=seed)
|
||
|
|
||
|
train = fake()
|
||
|
validation = fake()
|
||
|
test = fake()
|
||
|
return _Datasets(train=train, validation=validation, test=test)
|
||
|
|
||
|
if not source_url: # empty string check
|
||
|
source_url = DEFAULT_SOURCE_URL
|
||
|
|
||
|
train_images_file = 'train-images-idx3-ubyte.gz'
|
||
|
train_labels_file = 'train-labels-idx1-ubyte.gz'
|
||
|
test_images_file = 't10k-images-idx3-ubyte.gz'
|
||
|
test_labels_file = 't10k-labels-idx1-ubyte.gz'
|
||
|
|
||
|
local_file = _maybe_download(train_images_file, train_dir,
|
||
|
source_url + train_images_file)
|
||
|
with gfile.Open(local_file, 'rb') as f:
|
||
|
train_images = _extract_images(f)
|
||
|
|
||
|
local_file = _maybe_download(train_labels_file, train_dir,
|
||
|
source_url + train_labels_file)
|
||
|
with gfile.Open(local_file, 'rb') as f:
|
||
|
train_labels = _extract_labels(f, one_hot=one_hot)
|
||
|
|
||
|
local_file = _maybe_download(test_images_file, train_dir,
|
||
|
source_url + test_images_file)
|
||
|
with gfile.Open(local_file, 'rb') as f:
|
||
|
test_images = _extract_images(f)
|
||
|
|
||
|
local_file = _maybe_download(test_labels_file, train_dir,
|
||
|
source_url + test_labels_file)
|
||
|
with gfile.Open(local_file, 'rb') as f:
|
||
|
test_labels = _extract_labels(f, one_hot=one_hot)
|
||
|
|
||
|
if not 0 <= validation_size <= len(train_images):
|
||
|
raise ValueError(
|
||
|
'Validation size should be between 0 and {}. Received: {}.'.format(
|
||
|
len(train_images), validation_size))
|
||
|
|
||
|
validation_images = train_images[:validation_size]
|
||
|
validation_labels = train_labels[:validation_size]
|
||
|
train_images = train_images[validation_size:]
|
||
|
train_labels = train_labels[validation_size:]
|
||
|
|
||
|
options = dict(dtype=dtype, reshape=reshape, seed=seed)
|
||
|
|
||
|
train = _DataSet(train_images, train_labels, **options)
|
||
|
validation = _DataSet(validation_images, validation_labels, **options)
|
||
|
test = _DataSet(test_images, test_labels, **options)
|
||
|
|
||
|
return _Datasets(train=train, validation=validation, test=test)
|