mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
* [mypy] fix type annotations for graphs/a_star.py #4052 * updating DIRECTORY.md * Add from __future__ import anotations * rename delta by DIRECTIONS Co-authored-by: John Law <johnlaw.po@gmail.com> * Rename delta by DIRECTIONS in all code * Enclose script in __main__ code block * Refactor DIRECTIONS with comments for readibility * Delete heuristic example comment * Do not print, return all values * Fix multilines * fix black * Update a_star.py Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: John Law <johnlaw.po@gmail.com>
This commit is contained in:
parent
d924a8051b
commit
061614880d
@ -1,37 +1,21 @@
|
||||
grid = [
|
||||
[0, 1, 0, 0, 0, 0],
|
||||
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
|
||||
[0, 1, 0, 0, 0, 0],
|
||||
[0, 1, 0, 0, 1, 0],
|
||||
[0, 0, 0, 0, 1, 0],
|
||||
from __future__ import annotations
|
||||
|
||||
DIRECTIONS = [
|
||||
[-1, 0], # left
|
||||
[0, -1], # down
|
||||
[1, 0], # right
|
||||
[0, 1], # up
|
||||
]
|
||||
|
||||
"""
|
||||
heuristic = [[9, 8, 7, 6, 5, 4],
|
||||
[8, 7, 6, 5, 4, 3],
|
||||
[7, 6, 5, 4, 3, 2],
|
||||
[6, 5, 4, 3, 2, 1],
|
||||
[5, 4, 3, 2, 1, 0]]"""
|
||||
|
||||
init = [0, 0]
|
||||
goal = [len(grid) - 1, len(grid[0]) - 1] # all coordinates are given in format [y,x]
|
||||
cost = 1
|
||||
|
||||
# the cost map which pushes the path closer to the goal
|
||||
heuristic = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
|
||||
for i in range(len(grid)):
|
||||
for j in range(len(grid[0])):
|
||||
heuristic[i][j] = abs(i - goal[0]) + abs(j - goal[1])
|
||||
if grid[i][j] == 1:
|
||||
heuristic[i][j] = 99 # added extra penalty in the heuristic map
|
||||
|
||||
|
||||
# the actions we can take
|
||||
delta = [[-1, 0], [0, -1], [1, 0], [0, 1]] # go up # go left # go down # go right
|
||||
|
||||
|
||||
# function to search the path
|
||||
def search(grid, init, goal, cost, heuristic):
|
||||
def search(
|
||||
grid: list[list[int]],
|
||||
init: list[int],
|
||||
goal: list[int],
|
||||
cost: int,
|
||||
heuristic: list[list[int]],
|
||||
) -> tuple[list[list[int]], list[list[int]]]:
|
||||
|
||||
closed = [
|
||||
[0 for col in range(len(grid[0]))] for row in range(len(grid))
|
||||
@ -52,7 +36,7 @@ def search(grid, init, goal, cost, heuristic):
|
||||
|
||||
while not found and not resign:
|
||||
if len(cell) == 0:
|
||||
return "FAIL"
|
||||
raise ValueError("Algorithm is unable to find solution")
|
||||
else: # to choose the least costliest action so as to move closer to the goal
|
||||
cell.sort()
|
||||
cell.reverse()
|
||||
@ -64,9 +48,9 @@ def search(grid, init, goal, cost, heuristic):
|
||||
if x == goal[0] and y == goal[1]:
|
||||
found = True
|
||||
else:
|
||||
for i in range(len(delta)): # to try out different valid actions
|
||||
x2 = x + delta[i][0]
|
||||
y2 = y + delta[i][1]
|
||||
for i in range(len(DIRECTIONS)): # to try out different valid actions
|
||||
x2 = x + DIRECTIONS[i][0]
|
||||
y2 = y + DIRECTIONS[i][1]
|
||||
if x2 >= 0 and x2 < len(grid) and y2 >= 0 and y2 < len(grid[0]):
|
||||
if closed[x2][y2] == 0 and grid[x2][y2] == 0:
|
||||
g2 = g + cost
|
||||
@ -79,8 +63,8 @@ def search(grid, init, goal, cost, heuristic):
|
||||
y = goal[1]
|
||||
invpath.append([x, y]) # we get the reverse path from here
|
||||
while x != init[0] or y != init[1]:
|
||||
x2 = x - delta[action[x][y]][0]
|
||||
y2 = y - delta[action[x][y]][1]
|
||||
x2 = x - DIRECTIONS[action[x][y]][0]
|
||||
y2 = y - DIRECTIONS[action[x][y]][1]
|
||||
x = x2
|
||||
y = y2
|
||||
invpath.append([x, y])
|
||||
@ -88,13 +72,37 @@ def search(grid, init, goal, cost, heuristic):
|
||||
path = []
|
||||
for i in range(len(invpath)):
|
||||
path.append(invpath[len(invpath) - 1 - i])
|
||||
return path, action
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
grid = [
|
||||
[0, 1, 0, 0, 0, 0],
|
||||
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
|
||||
[0, 1, 0, 0, 0, 0],
|
||||
[0, 1, 0, 0, 1, 0],
|
||||
[0, 0, 0, 0, 1, 0],
|
||||
]
|
||||
|
||||
init = [0, 0]
|
||||
# all coordinates are given in format [y,x]
|
||||
goal = [len(grid) - 1, len(grid[0]) - 1]
|
||||
cost = 1
|
||||
|
||||
# the cost map which pushes the path closer to the goal
|
||||
heuristic = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
|
||||
for i in range(len(grid)):
|
||||
for j in range(len(grid[0])):
|
||||
heuristic[i][j] = abs(i - goal[0]) + abs(j - goal[1])
|
||||
if grid[i][j] == 1:
|
||||
# added extra penalty in the heuristic map
|
||||
heuristic[i][j] = 99
|
||||
|
||||
path, action = search(grid, init, goal, cost, heuristic)
|
||||
|
||||
print("ACTION MAP")
|
||||
for i in range(len(action)):
|
||||
print(action[i])
|
||||
|
||||
return path
|
||||
|
||||
|
||||
a = search(grid, init, goal, cost, heuristic)
|
||||
for i in range(len(a)):
|
||||
print(a[i])
|
||||
for i in range(len(path)):
|
||||
print(path[i])
|
||||
|
Loading…
Reference in New Issue
Block a user