mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
feat: Add pronic number implementation (#7979)
* feat: Add pronic number implementation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
3f9aae149d
commit
076193eefa
54
maths/pronic_number.py
Normal file
54
maths/pronic_number.py
Normal file
@ -0,0 +1,54 @@
|
|||||||
|
"""
|
||||||
|
== Pronic Number ==
|
||||||
|
A number n is said to be a Proic number if
|
||||||
|
there exists an integer m such that n = m * (m + 1)
|
||||||
|
|
||||||
|
Examples of Proic Numbers: 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110 ...
|
||||||
|
https://en.wikipedia.org/wiki/Pronic_number
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Author : Akshay Dubey (https://github.com/itsAkshayDubey)
|
||||||
|
|
||||||
|
|
||||||
|
def is_pronic(number: int) -> bool:
|
||||||
|
"""
|
||||||
|
# doctest: +NORMALIZE_WHITESPACE
|
||||||
|
This functions takes an integer number as input.
|
||||||
|
returns True if the number is pronic.
|
||||||
|
>>> is_pronic(-1)
|
||||||
|
False
|
||||||
|
>>> is_pronic(0)
|
||||||
|
True
|
||||||
|
>>> is_pronic(2)
|
||||||
|
True
|
||||||
|
>>> is_pronic(5)
|
||||||
|
False
|
||||||
|
>>> is_pronic(6)
|
||||||
|
True
|
||||||
|
>>> is_pronic(8)
|
||||||
|
False
|
||||||
|
>>> is_pronic(30)
|
||||||
|
True
|
||||||
|
>>> is_pronic(32)
|
||||||
|
False
|
||||||
|
>>> is_pronic(2147441940)
|
||||||
|
True
|
||||||
|
>>> is_pronic(9223372033963249500)
|
||||||
|
True
|
||||||
|
>>> is_pronic(6.0)
|
||||||
|
Traceback (most recent call last):
|
||||||
|
...
|
||||||
|
TypeError: Input value of [number=6.0] must be an integer
|
||||||
|
"""
|
||||||
|
if not isinstance(number, int):
|
||||||
|
raise TypeError(f"Input value of [number={number}] must be an integer")
|
||||||
|
if number < 0 or number % 2 == 1:
|
||||||
|
return False
|
||||||
|
number_sqrt = int(number**0.5)
|
||||||
|
return number == number_sqrt * (number_sqrt + 1)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import doctest
|
||||||
|
|
||||||
|
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user