mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Changing Name of file and adding doctests in file. (#9513)
* Adding doctests and changing file name * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update binary_multiplication.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update binary_multiplication.py * Changing comment and changing name function * Changing comment and changing name function * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update binary_multiplication.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update binary_multiplication.py * Update binary_multiplication.py --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
parent
b60a94b5b3
commit
0a84b8f842
@ -1,50 +0,0 @@
|
|||||||
"""
|
|
||||||
* Binary Exponentiation with Multiplication
|
|
||||||
* This is a method to find a*b in a time complexity of O(log b)
|
|
||||||
* This is one of the most commonly used methods of finding result of multiplication.
|
|
||||||
* Also useful in cases where solution to (a*b)%c is required,
|
|
||||||
* where a,b,c can be numbers over the computers calculation limits.
|
|
||||||
* Done using iteration, can also be done using recursion
|
|
||||||
|
|
||||||
* @author chinmoy159
|
|
||||||
* @version 1.0 dated 10/08/2017
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
def b_expo(a: int, b: int) -> int:
|
|
||||||
res = 0
|
|
||||||
while b > 0:
|
|
||||||
if b & 1:
|
|
||||||
res += a
|
|
||||||
|
|
||||||
a += a
|
|
||||||
b >>= 1
|
|
||||||
|
|
||||||
return res
|
|
||||||
|
|
||||||
|
|
||||||
def b_expo_mod(a: int, b: int, c: int) -> int:
|
|
||||||
res = 0
|
|
||||||
while b > 0:
|
|
||||||
if b & 1:
|
|
||||||
res = ((res % c) + (a % c)) % c
|
|
||||||
|
|
||||||
a += a
|
|
||||||
b >>= 1
|
|
||||||
|
|
||||||
return res
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
* Wondering how this method works !
|
|
||||||
* It's pretty simple.
|
|
||||||
* Let's say you need to calculate a ^ b
|
|
||||||
* RULE 1 : a * b = (a+a) * (b/2) ---- example : 4 * 4 = (4+4) * (4/2) = 8 * 2
|
|
||||||
* RULE 2 : IF b is ODD, then ---- a * b = a + (a * (b - 1)) :: where (b - 1) is even.
|
|
||||||
* Once b is even, repeat the process to get a * b
|
|
||||||
* Repeat the process till b = 1 OR b = 0, because a*1 = a AND a*0 = 0
|
|
||||||
*
|
|
||||||
* As far as the modulo is concerned,
|
|
||||||
* the fact : (a+b) % c = ((a%c) + (b%c)) % c
|
|
||||||
* Now apply RULE 1 OR 2, whichever is required.
|
|
||||||
"""
|
|
101
maths/binary_multiplication.py
Normal file
101
maths/binary_multiplication.py
Normal file
@ -0,0 +1,101 @@
|
|||||||
|
"""
|
||||||
|
Binary Multiplication
|
||||||
|
This is a method to find a*b in a time complexity of O(log b)
|
||||||
|
This is one of the most commonly used methods of finding result of multiplication.
|
||||||
|
Also useful in cases where solution to (a*b)%c is required,
|
||||||
|
where a,b,c can be numbers over the computers calculation limits.
|
||||||
|
Done using iteration, can also be done using recursion
|
||||||
|
|
||||||
|
Let's say you need to calculate a * b
|
||||||
|
RULE 1 : a * b = (a+a) * (b/2) ---- example : 4 * 4 = (4+4) * (4/2) = 8 * 2
|
||||||
|
RULE 2 : IF b is odd, then ---- a * b = a + (a * (b - 1)), where (b - 1) is even.
|
||||||
|
Once b is even, repeat the process to get a * b
|
||||||
|
Repeat the process until b = 1 or b = 0, because a*1 = a and a*0 = 0
|
||||||
|
|
||||||
|
As far as the modulo is concerned,
|
||||||
|
the fact : (a+b) % c = ((a%c) + (b%c)) % c
|
||||||
|
Now apply RULE 1 or 2, whichever is required.
|
||||||
|
|
||||||
|
@author chinmoy159
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def binary_multiply(a: int, b: int) -> int:
|
||||||
|
"""
|
||||||
|
Multiply 'a' and 'b' using bitwise multiplication.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
a (int): The first number.
|
||||||
|
b (int): The second number.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
int: a * b
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> binary_multiply(2, 3)
|
||||||
|
6
|
||||||
|
>>> binary_multiply(5, 0)
|
||||||
|
0
|
||||||
|
>>> binary_multiply(3, 4)
|
||||||
|
12
|
||||||
|
>>> binary_multiply(10, 5)
|
||||||
|
50
|
||||||
|
>>> binary_multiply(0, 5)
|
||||||
|
0
|
||||||
|
>>> binary_multiply(2, 1)
|
||||||
|
2
|
||||||
|
>>> binary_multiply(1, 10)
|
||||||
|
10
|
||||||
|
"""
|
||||||
|
res = 0
|
||||||
|
while b > 0:
|
||||||
|
if b & 1:
|
||||||
|
res += a
|
||||||
|
|
||||||
|
a += a
|
||||||
|
b >>= 1
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def binary_mod_multiply(a: int, b: int, modulus: int) -> int:
|
||||||
|
"""
|
||||||
|
Calculate (a * b) % c using binary multiplication and modular arithmetic.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
a (int): The first number.
|
||||||
|
b (int): The second number.
|
||||||
|
modulus (int): The modulus.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
int: (a * b) % modulus.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> binary_mod_multiply(2, 3, 5)
|
||||||
|
1
|
||||||
|
>>> binary_mod_multiply(5, 0, 7)
|
||||||
|
0
|
||||||
|
>>> binary_mod_multiply(3, 4, 6)
|
||||||
|
0
|
||||||
|
>>> binary_mod_multiply(10, 5, 13)
|
||||||
|
11
|
||||||
|
>>> binary_mod_multiply(2, 1, 5)
|
||||||
|
2
|
||||||
|
>>> binary_mod_multiply(1, 10, 3)
|
||||||
|
1
|
||||||
|
"""
|
||||||
|
res = 0
|
||||||
|
while b > 0:
|
||||||
|
if b & 1:
|
||||||
|
res = ((res % modulus) + (a % modulus)) % modulus
|
||||||
|
|
||||||
|
a += a
|
||||||
|
b >>= 1
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import doctest
|
||||||
|
|
||||||
|
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user