mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Add files via upload
This commit is contained in:
parent
0e7d4483ca
commit
0b85929188
70
linear-algebra-python/README.md
Normal file
70
linear-algebra-python/README.md
Normal file
@ -0,0 +1,70 @@
|
||||
# Linear algebra library for Python
|
||||
|
||||
This module contains some useful classes and functions for dealing with linear algebra in python 2.
|
||||
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
- class Vector
|
||||
- This class represents a vector of arbitray size and operations on it.
|
||||
|
||||
**Overview about the methods:**
|
||||
|
||||
- constructor(components : list) : init the vector
|
||||
- set(components : list) : changes the vector components.
|
||||
- __str__() : toString method
|
||||
- component(i : int): gets the i-th component (start by 0)
|
||||
- size() : gets the size of the vector (number of components)
|
||||
- euclidLength() : returns the eulidean length of the vector.
|
||||
- operator + : vector addition
|
||||
- operator - : vector subtraction
|
||||
- operator * : scalar multiplication and dot product
|
||||
- copy() : copies this vector and returns it.
|
||||
- changeComponent(pos,value) : changes the specified component.
|
||||
|
||||
- function zeroVector(dimension)
|
||||
- returns a zero vector of 'dimension'
|
||||
- function unitBasisVector(dimension,pos)
|
||||
- returns a unit basis vector with a One at index 'pos' (indexing at 0)
|
||||
- function axpy(scalar,vector1,vector2)
|
||||
- computes the axpy operation
|
||||
- class Matrix
|
||||
- This class represents a matrix of arbitrary size and operations on it.
|
||||
|
||||
**Overview about the methods:**
|
||||
|
||||
- __str__() : returns a string representation
|
||||
- operator * : implements the matrix vector multiplication
|
||||
implements the matrix-scalar multiplication.
|
||||
- changeComponent(x,y,value) : changes the specified component.
|
||||
- component(x,y) : returns the specified component.
|
||||
- width() : returns the width of the matrix
|
||||
- height() : returns the height of the matrix
|
||||
- operator + : implements the matrix-addition.
|
||||
- operator - _ implements the matrix-subtraction
|
||||
- function squareZeroMatrix(N)
|
||||
- returns a square zero-matrix of dimension NxN
|
||||
---
|
||||
|
||||
## Documentation
|
||||
|
||||
The module is well documented. You can use the python in-built ```help(...)``` function.
|
||||
For instance: ```help(Vector)``` gives you all information about the Vector-class.
|
||||
Or ```help(unitBasisVector)``` gives you all information you needed about the
|
||||
global function ```unitBasisVector(...)```. If you need informations about a certain
|
||||
method you type ```help(CLASSNAME.METHODNAME)```.
|
||||
|
||||
---
|
||||
|
||||
## Usage
|
||||
|
||||
You will find the module in the **src** directory its called ```lib.py```. You need to
|
||||
import this module in your project. Alternative you can also use the file ```lib.pyc``` in python-bytecode.
|
||||
|
||||
---
|
||||
|
||||
## Tests
|
||||
|
||||
In the **src** directory you also find the test-suite, its called ```tests.py```.
|
||||
The test-suite uses the built-in python-test-framework **unittest**.
|
332
linear-algebra-python/src/lib.py
Normal file
332
linear-algebra-python/src/lib.py
Normal file
@ -0,0 +1,332 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Mon Feb 26 14:29:11 2018
|
||||
|
||||
@author: Christian Bender
|
||||
@license: MIT-license
|
||||
|
||||
This module contains some useful classes and functions for dealing
|
||||
with linear algebra in python.
|
||||
|
||||
Overview:
|
||||
|
||||
- class Vector
|
||||
- function zeroVector(dimension)
|
||||
- function unitBasisVector(dimension,pos)
|
||||
- function axpy(scalar,vector1,vector2)
|
||||
- class Matrix
|
||||
- squareZeroMatrix(N)
|
||||
"""
|
||||
|
||||
|
||||
import math
|
||||
|
||||
|
||||
class Vector(object):
|
||||
"""
|
||||
This class represents a vector of arbitray size.
|
||||
You need to give the vector components.
|
||||
|
||||
Overview about the methods:
|
||||
|
||||
constructor(components : list) : init the vector
|
||||
set(components : list) : changes the vector components.
|
||||
__str__() : toString method
|
||||
component(i : int): gets the i-th component (start by 0)
|
||||
size() : gets the size of the vector (number of components)
|
||||
euclidLength() : returns the eulidean length of the vector.
|
||||
operator + : vector addition
|
||||
operator - : vector subtraction
|
||||
operator * : scalar multiplication and dot product
|
||||
copy() : copies this vector and returns it.
|
||||
changeComponent(pos,value) : changes the specified component.
|
||||
TODO: compare-operator
|
||||
"""
|
||||
def __init__(self,components):
|
||||
"""
|
||||
input: components or nothing
|
||||
simple constructor for init the vector
|
||||
"""
|
||||
self.__components = components
|
||||
def set(self,components):
|
||||
"""
|
||||
input: new components
|
||||
changes the components of the vector.
|
||||
replace the components with newer one.
|
||||
"""
|
||||
if len(components) > 0:
|
||||
self.__components = components
|
||||
else:
|
||||
raise Exception("please give any vector")
|
||||
def __str__(self):
|
||||
"""
|
||||
returns a string representation of the vector
|
||||
"""
|
||||
ans = "("
|
||||
length = len(self.__components)
|
||||
for i in range(length):
|
||||
if i != length-1:
|
||||
ans += str(self.__components[i]) + ","
|
||||
else:
|
||||
ans += str(self.__components[i]) + ")"
|
||||
if len(ans) == 1:
|
||||
ans += ")"
|
||||
return ans
|
||||
def component(self,i):
|
||||
"""
|
||||
input: index (start at 0)
|
||||
output: the i-th component of the vector.
|
||||
"""
|
||||
if i < len(self.__components) and i >= 0:
|
||||
return self.__components[i]
|
||||
else:
|
||||
raise Exception("index out of range")
|
||||
def size(self):
|
||||
"""
|
||||
returns the size of the vector
|
||||
"""
|
||||
return len(self.__components)
|
||||
def eulidLength(self):
|
||||
"""
|
||||
returns the eulidean length of the vector
|
||||
"""
|
||||
summe = 0
|
||||
for c in self.__components:
|
||||
summe += c**2
|
||||
return math.sqrt(summe)
|
||||
def __add__(self,other):
|
||||
"""
|
||||
input: other vector
|
||||
assumes: other vector has the same size
|
||||
returns a new vector that represents the sum.
|
||||
"""
|
||||
size = self.size()
|
||||
result = []
|
||||
if size == other.size():
|
||||
for i in range(size):
|
||||
result.append(self.__components[i] + other.component(i))
|
||||
else:
|
||||
raise Exception("must have the same size")
|
||||
return Vector(result)
|
||||
def __sub__(self,other):
|
||||
"""
|
||||
input: other vector
|
||||
assumes: other vector has the same size
|
||||
returns a new vector that represents the differenz.
|
||||
"""
|
||||
size = self.size()
|
||||
result = []
|
||||
if size == other.size():
|
||||
for i in range(size):
|
||||
result.append(self.__components[i] - other.component(i))
|
||||
else: # error case
|
||||
raise Exception("must have the same size")
|
||||
return Vector(result)
|
||||
def __mul__(self,other):
|
||||
"""
|
||||
mul implements the scalar multiplication
|
||||
and the dot-product
|
||||
"""
|
||||
ans = []
|
||||
if isinstance(other,float) or isinstance(other,int):
|
||||
for c in self.__components:
|
||||
ans.append(c*other)
|
||||
elif (isinstance(other,Vector) and (self.size() == other.size())):
|
||||
size = self.size()
|
||||
summe = 0
|
||||
for i in range(size):
|
||||
summe += self.__components[i] * other.component(i)
|
||||
return summe
|
||||
else: # error case
|
||||
raise Exception("invalide operand!")
|
||||
return Vector(ans)
|
||||
def copy(self):
|
||||
"""
|
||||
copies this vector and returns it.
|
||||
"""
|
||||
components = [x for x in self.__components]
|
||||
return Vector(components)
|
||||
def changeComponent(self,pos,value):
|
||||
"""
|
||||
input: an index (pos) and a value
|
||||
changes the specified component (pos) with the
|
||||
'value'
|
||||
"""
|
||||
#precondition
|
||||
assert (pos >= 0 and pos < len(self.__components))
|
||||
self.__components[pos] = value
|
||||
|
||||
def zeroVector(dimension):
|
||||
"""
|
||||
returns a zero-vector of size 'dimension'
|
||||
"""
|
||||
#precondition
|
||||
assert(isinstance(dimension,int))
|
||||
ans = []
|
||||
for i in range(dimension):
|
||||
ans.append(0)
|
||||
return Vector(ans)
|
||||
|
||||
|
||||
def unitBasisVector(dimension,pos):
|
||||
"""
|
||||
returns a unit basis vector with a One
|
||||
at index 'pos' (indexing at 0)
|
||||
"""
|
||||
#precondition
|
||||
assert(isinstance(dimension,int) and (isinstance(pos,int)))
|
||||
ans = []
|
||||
for i in range(dimension):
|
||||
if i != pos:
|
||||
ans.append(0)
|
||||
else:
|
||||
ans.append(1)
|
||||
return Vector(ans)
|
||||
|
||||
|
||||
def axpy(scalar,x,y):
|
||||
"""
|
||||
input: a 'scalar' and two vectors 'x' and 'y'
|
||||
output: a vector
|
||||
computes the axpy operation
|
||||
"""
|
||||
# precondition
|
||||
assert(isinstance(x,Vector) and (isinstance(y,Vector)) \
|
||||
and (isinstance(scalar,int) or isinstance(scalar,float)))
|
||||
return (x*scalar + y)
|
||||
|
||||
|
||||
class Matrix(object):
|
||||
"""
|
||||
class: Matrix
|
||||
This class represents a arbitrary matrix.
|
||||
|
||||
Overview about the methods:
|
||||
|
||||
__str__() : returns a string representation
|
||||
operator * : implements the matrix vector multiplication
|
||||
implements the matrix-scalar multiplication.
|
||||
changeComponent(x,y,value) : changes the specified component.
|
||||
component(x,y) : returns the specified component.
|
||||
width() : returns the width of the matrix
|
||||
height() : returns the height of the matrix
|
||||
operator + : implements the matrix-addition.
|
||||
operator - _ implements the matrix-subtraction
|
||||
"""
|
||||
def __init__(self,matrix,w,h):
|
||||
"""
|
||||
simple constructor for initialzes
|
||||
the matrix with components.
|
||||
"""
|
||||
self.__matrix = matrix
|
||||
self.__width = w
|
||||
self.__height = h
|
||||
def __str__(self):
|
||||
"""
|
||||
returns a string representation of this
|
||||
matrix.
|
||||
"""
|
||||
ans = ""
|
||||
for i in range(self.__height):
|
||||
ans += "|"
|
||||
for j in range(self.__width):
|
||||
if j < self.__width -1:
|
||||
ans += str(self.__matrix[i][j]) + ","
|
||||
else:
|
||||
ans += str(self.__matrix[i][j]) + "|\n"
|
||||
return ans
|
||||
def changeComponent(self,x,y, value):
|
||||
"""
|
||||
changes the x-y component of this matrix
|
||||
"""
|
||||
if x >= 0 and x < self.__height and y >= 0 and y < self.__width:
|
||||
self.__matrix[x][y] = value
|
||||
else:
|
||||
raise Exception ("changeComponent: indices out of bounds")
|
||||
def component(self,x,y):
|
||||
"""
|
||||
returns the specified (x,y) component
|
||||
"""
|
||||
if x >= 0 and x < self.__height and y >= 0 and y < self.__width:
|
||||
return self.__matrix[x][y]
|
||||
else:
|
||||
raise Exception ("changeComponent: indices out of bounds")
|
||||
def width(self):
|
||||
"""
|
||||
getter for the width
|
||||
"""
|
||||
return self.__width
|
||||
def height(self):
|
||||
"""
|
||||
getter for the height
|
||||
"""
|
||||
return self.__height
|
||||
def __mul__(self,other):
|
||||
"""
|
||||
implements the matrix-vector multiplication.
|
||||
implements the matrix-scalar multiplication
|
||||
"""
|
||||
if isinstance(other, Vector): # vector-matrix
|
||||
if (other.size() == self.__width):
|
||||
ans = zeroVector(self.__height)
|
||||
for i in range(self.__height):
|
||||
summe = 0
|
||||
for j in range(self.__width):
|
||||
summe += other.component(j) * self.__matrix[i][j]
|
||||
ans.changeComponent(i,summe)
|
||||
summe = 0
|
||||
return ans
|
||||
else:
|
||||
raise Exception("vector must have the same size as the "
|
||||
+ "number of columns of the matrix!")
|
||||
elif isinstance(other,int) or isinstance(other,float): # matrix-scalar
|
||||
matrix = []
|
||||
for i in range(self.__height):
|
||||
row = []
|
||||
for j in range(self.__width):
|
||||
row.append(self.__matrix[i][j] * other)
|
||||
matrix.append(row)
|
||||
return Matrix(matrix,self.__width,self.__height)
|
||||
def __add__(self,other):
|
||||
"""
|
||||
implements the matrix-addition.
|
||||
"""
|
||||
if (self.__width == other.width() and self.__height == other.height()):
|
||||
matrix = []
|
||||
for i in range(self.__height):
|
||||
row = []
|
||||
for j in range(self.__width):
|
||||
row.append(self.__matrix[i][j] + other.component(i,j))
|
||||
matrix.append(row)
|
||||
return Matrix(matrix,self.__width,self.__height)
|
||||
else:
|
||||
raise Exception("matrix must have the same dimension!")
|
||||
def __sub__(self,other):
|
||||
"""
|
||||
implements the matrix-subtraction.
|
||||
"""
|
||||
if (self.__width == other.width() and self.__height == other.height()):
|
||||
matrix = []
|
||||
for i in range(self.__height):
|
||||
row = []
|
||||
for j in range(self.__width):
|
||||
row.append(self.__matrix[i][j] - other.component(i,j))
|
||||
matrix.append(row)
|
||||
return Matrix(matrix,self.__width,self.__height)
|
||||
else:
|
||||
raise Exception("matrix must have the same dimension!")
|
||||
|
||||
|
||||
def squareZeroMatrix(N):
|
||||
"""
|
||||
returns a square zero-matrix of dimension NxN
|
||||
"""
|
||||
ans = []
|
||||
for i in range(N):
|
||||
row = []
|
||||
for j in range(N):
|
||||
row.append(0)
|
||||
ans.append(row)
|
||||
return Matrix(ans,N,N)
|
||||
|
||||
|
BIN
linear-algebra-python/src/lib.pyc
Normal file
BIN
linear-algebra-python/src/lib.pyc
Normal file
Binary file not shown.
133
linear-algebra-python/src/tests.py
Normal file
133
linear-algebra-python/src/tests.py
Normal file
@ -0,0 +1,133 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Mon Feb 26 15:40:07 2018
|
||||
|
||||
@author: Christian Bender
|
||||
@license: MIT-license
|
||||
|
||||
This file contains the test-suite for the linear algebra library.
|
||||
"""
|
||||
|
||||
import unittest
|
||||
from lib import *
|
||||
|
||||
class Test(unittest.TestCase):
|
||||
def test_component(self):
|
||||
"""
|
||||
test for method component
|
||||
"""
|
||||
x = Vector([1,2,3])
|
||||
self.assertEqual(x.component(0),1)
|
||||
self.assertEqual(x.component(2),3)
|
||||
try:
|
||||
y = Vector()
|
||||
self.assertTrue(False)
|
||||
except:
|
||||
self.assertTrue(True)
|
||||
def test_str(self):
|
||||
"""
|
||||
test for toString() method
|
||||
"""
|
||||
x = Vector([0,0,0,0,0,1])
|
||||
self.assertEqual(x.__str__(),"(0,0,0,0,0,1)")
|
||||
def test_size(self):
|
||||
"""
|
||||
test for size()-method
|
||||
"""
|
||||
x = Vector([1,2,3,4])
|
||||
self.assertEqual(x.size(),4)
|
||||
def test_euclidLength(self):
|
||||
"""
|
||||
test for the eulidean length
|
||||
"""
|
||||
x = Vector([1,2])
|
||||
self.assertAlmostEqual(x.eulidLength(),2.236,3)
|
||||
def test_add(self):
|
||||
"""
|
||||
test for + operator
|
||||
"""
|
||||
x = Vector([1,2,3])
|
||||
y = Vector([1,1,1])
|
||||
self.assertEqual((x+y).component(0),2)
|
||||
self.assertEqual((x+y).component(1),3)
|
||||
self.assertEqual((x+y).component(2),4)
|
||||
def test_sub(self):
|
||||
"""
|
||||
test for - operator
|
||||
"""
|
||||
x = Vector([1,2,3])
|
||||
y = Vector([1,1,1])
|
||||
self.assertEqual((x-y).component(0),0)
|
||||
self.assertEqual((x-y).component(1),1)
|
||||
self.assertEqual((x-y).component(2),2)
|
||||
def test_mul(self):
|
||||
"""
|
||||
test for * operator
|
||||
"""
|
||||
x = Vector([1,2,3])
|
||||
a = Vector([2,-1,4]) # for test of dot-product
|
||||
b = Vector([1,-2,-1])
|
||||
self.assertEqual((x*3.0).__str__(),"(3.0,6.0,9.0)")
|
||||
self.assertEqual((a*b),0)
|
||||
def test_zeroVector(self):
|
||||
"""
|
||||
test for the global function zeroVector(...)
|
||||
"""
|
||||
self.assertTrue(zeroVector(10).__str__().count("0") == 10)
|
||||
def test_unitBasisVector(self):
|
||||
"""
|
||||
test for the global function unitBasisVector(...)
|
||||
"""
|
||||
self.assertEqual(unitBasisVector(3,1).__str__(),"(0,1,0)")
|
||||
def test_axpy(self):
|
||||
"""
|
||||
test for the global function axpy(...) (operation)
|
||||
"""
|
||||
x = Vector([1,2,3])
|
||||
y = Vector([1,0,1])
|
||||
self.assertEqual(axpy(2,x,y).__str__(),"(3,4,7)")
|
||||
def test_copy(self):
|
||||
"""
|
||||
test for the copy()-method
|
||||
"""
|
||||
x = Vector([1,0,0,0,0,0])
|
||||
y = x.copy()
|
||||
self.assertEqual(x.__str__(),y.__str__())
|
||||
def test_changeComponent(self):
|
||||
"""
|
||||
test for the changeComponent(...)-method
|
||||
"""
|
||||
x = Vector([1,0,0])
|
||||
x.changeComponent(0,0)
|
||||
x.changeComponent(1,1)
|
||||
self.assertEqual(x.__str__(),"(0,1,0)")
|
||||
def test_str_matrix(self):
|
||||
A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3)
|
||||
self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n",A.__str__())
|
||||
def test__mul__matrix(self):
|
||||
A = Matrix([[1,2,3],[4,5,6],[7,8,9]],3,3)
|
||||
x = Vector([1,2,3])
|
||||
self.assertEqual("(14,32,50)",(A*x).__str__())
|
||||
self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n",(A*2).__str__())
|
||||
def test_changeComponent_matrix(self):
|
||||
A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3)
|
||||
A.changeComponent(0,2,5)
|
||||
self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n",A.__str__())
|
||||
def test_component_matrix(self):
|
||||
A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3)
|
||||
self.assertEqual(7,A.component(2,1),0.01)
|
||||
def test__add__matrix(self):
|
||||
A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3)
|
||||
B = Matrix([[1,2,7],[2,4,5],[6,7,10]],3,3)
|
||||
self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n",(A+B).__str__())
|
||||
def test__sub__matrix(self):
|
||||
A = Matrix([[1,2,3],[2,4,5],[6,7,8]],3,3)
|
||||
B = Matrix([[1,2,7],[2,4,5],[6,7,10]],3,3)
|
||||
self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n",(A-B).__str__())
|
||||
def test_squareZeroMatrix(self):
|
||||
self.assertEqual('|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|'
|
||||
+'\n|0,0,0,0,0|\n',squareZeroMatrix(5).__str__())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in New Issue
Block a user