mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Log_likelihood update (#1008)
* Add files via upload This is a simple exploratory notebook that heavily expolits pandas and seaborn * Update logistic_regression.py * Update logistic_regression.py * Rename Food wastage analysis from 1961-2013 (FAO).ipynb to other/Food wastage analysis from 1961-2013 (FAO).ipynb * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py
This commit is contained in:
parent
d72586c5f4
commit
0d61539883
@ -31,13 +31,16 @@ def sigmoid_function(z):
|
||||
def cost_function(h, y):
|
||||
return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()
|
||||
|
||||
def log_likelihood(X, Y, weights):
|
||||
scores = np.dot(X, weights)
|
||||
return np.sum(Y*scores - np.log(1 + np.exp(scores)) )
|
||||
|
||||
# here alpha is the learning rate, X is the feature matrix,y is the target matrix
|
||||
|
||||
def logistic_reg(
|
||||
alpha,
|
||||
X,
|
||||
y,
|
||||
num_steps,
|
||||
max_iterations=70000,
|
||||
):
|
||||
converged = False
|
||||
@ -49,21 +52,24 @@ def logistic_reg(
|
||||
h = sigmoid_function(z)
|
||||
gradient = np.dot(X.T, h - y) / y.size
|
||||
theta = theta - alpha * gradient
|
||||
|
||||
z = np.dot(X, theta)
|
||||
h = sigmoid_function(z)
|
||||
J = cost_function(h, y)
|
||||
|
||||
iterations += 1 # update iterations
|
||||
|
||||
if iterations == max_iterations:
|
||||
print ('Maximum iterations exceeded!')
|
||||
print ('Minimal cost function J=', J)
|
||||
converged = True
|
||||
|
||||
weights = np.zeros(X.shape[1])
|
||||
for step in range(num_steps):
|
||||
scores = np.dot(X, weights)
|
||||
predictions = sigmoid_function(scores)
|
||||
if step % 10000 == 0:
|
||||
print(log_likelihood(X,y,weights)) # Print log-likelihood every so often
|
||||
return weights
|
||||
|
||||
if iterations == max_iterations:
|
||||
print ('Maximum iterations exceeded!')
|
||||
print ('Minimal cost function J=', J)
|
||||
converged = True
|
||||
return theta
|
||||
|
||||
|
||||
# In[68]:
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -72,7 +78,7 @@ if __name__ == '__main__':
|
||||
y = (iris.target != 0) * 1
|
||||
|
||||
alpha = 0.1
|
||||
theta = logistic_reg(alpha, X, y, max_iterations=70000)
|
||||
theta = logistic_reg(alpha,X,y,max_iterations=70000,num_steps=30000)
|
||||
print (theta)
|
||||
|
||||
|
||||
|
5916
other/Food wastage analysis from 1961-2013 (FAO).ipynb
Normal file
5916
other/Food wastage analysis from 1961-2013 (FAO).ipynb
Normal file
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user