diff --git a/cellular_automata/one_dimensional.py b/cellular_automata/one_dimensional.py new file mode 100644 index 000000000..98d6fa25d --- /dev/null +++ b/cellular_automata/one_dimensional.py @@ -0,0 +1,73 @@ +""" +Return an image of 16 generations of one-dimensional cellular automata based on a given +ruleset number +https://mathworld.wolfram.com/ElementaryCellularAutomaton.html +""" + +from typing import List + +from PIL import Image + +# Define the first generation of cells +# fmt: off +CELLS = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] +# fmt: on + + +def format_ruleset(ruleset: int) -> List[int]: + """ + >>> format_ruleset(11100) + [0, 0, 0, 1, 1, 1, 0, 0] + >>> format_ruleset(0) + [0, 0, 0, 0, 0, 0, 0, 0] + >>> format_ruleset(11111111) + [1, 1, 1, 1, 1, 1, 1, 1] + """ + return [int(c) for c in f"{ruleset:08}"[:8]] + + +def new_generation(cells: List[List[int]], rule: List[int], time: int) -> List[int]: + population = len(cells[0]) # 31 + next_generation = [] + for i in range(population): + # Get the neighbors of each cell + left_neighbor = 0 if i == 0 else cells[time][i - 1] # special: leftmost cell + right_neighbor = 0 if i == population - 1 else cells[time][i + 1] # rightmost + # Define a new cell and add it to the new generation + situation = 7 - int(f"{left_neighbor}{cells[time][i]}{right_neighbor}", 2) + next_generation.append(rule[situation]) + return next_generation + + +def generate_image(cells: List[List[int]]) -> Image.Image: + """ + Convert the cells into a greyscale PIL.Image.Image and return it to the caller. + >>> from random import random + >>> cells = [[random() for w in range(31)] for h in range(16)] + >>> img = generate_image(cells) + >>> isinstance(img, Image.Image) + True + >>> img.width, img.height + (31, 16) + """ + # Create the output image + img = Image.new("RGB", (len(cells[0]), len(cells))) + pixels = img.load() + # Generates image + for w in range(img.width): + for h in range(img.height): + color = 255 - int(255 * cells[h][w]) + pixels[w, h] = (color, color, color) + return img + + +if __name__ == "__main__": + rule_num = bin(int(input("Rule:\n").strip()))[2:] + rule = format_ruleset(int(rule_num)) + for time in range(16): + CELLS.append(new_generation(CELLS, rule, time)) + img = generate_image(CELLS) + # Uncomment to save the image + # img.save(f"rule_{rule_num}.png") + img.show()