Remove code with side effects from main (#1577)

* Remove code with side effects from main

When running tests withy pytest, some modules execute code in main scope
and open plot or browser windows.

Moves such code under `if __name__ == "__main__"`.

* fixup! Format Python code with psf/black push
This commit is contained in:
Mantas Zimnickas 2019-11-17 20:38:48 +02:00 committed by Christian Clauss
parent 5616fa9e62
commit 12f69a86f5
4 changed files with 516 additions and 505 deletions

View File

@ -6,14 +6,15 @@ Requirements:
Python: Python:
- 3.5 - 3.5
""" """
# Create universe of discourse in python using linspace ()
import numpy as np import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in python using linspace ()
X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc). # Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc).
import skfuzzy as fuzz
abc1 = [0, 25, 50] abc1 = [0, 25, 50]
abc2 = [25, 50, 75] abc2 = [25, 50, 75]
young = fuzz.membership.trimf(X, abc1) young = fuzz.membership.trimf(X, abc1)
@ -42,7 +43,6 @@ bdd_difference = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition # max-min composition
# max-product composition # max-product composition
# Plot each set A, set B and each operation result using plot() and subplot(). # Plot each set A, set B and each operation result using plot() and subplot().
import matplotlib.pyplot as plt import matplotlib.pyplot as plt

View File

@ -36,6 +36,7 @@ def viz_polymonial():
return return
if __name__ == "__main__":
viz_polymonial() viz_polymonial()
# Predicting a new result with Polymonial Regression # Predicting a new result with Polymonial Regression

View File

@ -59,6 +59,7 @@ def plot(samples):
return fig return fig
if __name__ == "__main__":
# 1. Load Data and declare hyper # 1. Load Data and declare hyper
print("--------- Load Data ----------") print("--------- Load Data ----------")
mnist = input_data.read_data_sets("MNIST_data", one_hot=False) mnist = input_data.read_data_sets("MNIST_data", one_hot=False)
@ -71,25 +72,28 @@ G_input = 100
hidden_input, hidden_input2, hidden_input3 = 128, 256, 346 hidden_input, hidden_input2, hidden_input3 = 128, 256, 346
hidden_input4, hidden_input5, hidden_input6 = 480, 560, 686 hidden_input4, hidden_input5, hidden_input6 = 480, 560, 686
print("--------- Declare Hyper Parameters ----------") print("--------- Declare Hyper Parameters ----------")
# 2. Declare Weights # 2. Declare Weights
D_W1 = ( D_W1 = (
np.random.normal(size=(784, hidden_input), scale=(1.0 / np.sqrt(784 / 2.0))) * 0.002 np.random.normal(size=(784, hidden_input), scale=(1.0 / np.sqrt(784 / 2.0)))
* 0.002
) )
# D_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 # D_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
D_b1 = np.zeros(hidden_input) D_b1 = np.zeros(hidden_input)
D_W2 = ( D_W2 = (
np.random.normal(size=(hidden_input, 1), scale=(1.0 / np.sqrt(hidden_input / 2.0))) np.random.normal(
size=(hidden_input, 1), scale=(1.0 / np.sqrt(hidden_input / 2.0))
)
* 0.002 * 0.002
) )
# D_b2 = np.random.normal(size=(1),scale=(1. / np.sqrt(1 / 2.))) *0.002 # D_b2 = np.random.normal(size=(1),scale=(1. / np.sqrt(1 / 2.))) *0.002
D_b2 = np.zeros(1) D_b2 = np.zeros(1)
G_W1 = ( G_W1 = (
np.random.normal(size=(G_input, hidden_input), scale=(1.0 / np.sqrt(G_input / 2.0))) np.random.normal(
size=(G_input, hidden_input), scale=(1.0 / np.sqrt(G_input / 2.0))
)
* 0.002 * 0.002
) )
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
@ -97,7 +101,8 @@ G_b1 = np.zeros(hidden_input)
G_W2 = ( G_W2 = (
np.random.normal( np.random.normal(
size=(hidden_input, hidden_input2), scale=(1.0 / np.sqrt(hidden_input / 2.0)) size=(hidden_input, hidden_input2),
scale=(1.0 / np.sqrt(hidden_input / 2.0)),
) )
* 0.002 * 0.002
) )
@ -106,7 +111,8 @@ G_b2 = np.zeros(hidden_input2)
G_W3 = ( G_W3 = (
np.random.normal( np.random.normal(
size=(hidden_input2, hidden_input3), scale=(1.0 / np.sqrt(hidden_input2 / 2.0)) size=(hidden_input2, hidden_input3),
scale=(1.0 / np.sqrt(hidden_input2 / 2.0)),
) )
* 0.002 * 0.002
) )
@ -115,7 +121,8 @@ G_b3 = np.zeros(hidden_input3)
G_W4 = ( G_W4 = (
np.random.normal( np.random.normal(
size=(hidden_input3, hidden_input4), scale=(1.0 / np.sqrt(hidden_input3 / 2.0)) size=(hidden_input3, hidden_input4),
scale=(1.0 / np.sqrt(hidden_input3 / 2.0)),
) )
* 0.002 * 0.002
) )
@ -124,7 +131,8 @@ G_b4 = np.zeros(hidden_input4)
G_W5 = ( G_W5 = (
np.random.normal( np.random.normal(
size=(hidden_input4, hidden_input5), scale=(1.0 / np.sqrt(hidden_input4 / 2.0)) size=(hidden_input4, hidden_input5),
scale=(1.0 / np.sqrt(hidden_input4 / 2.0)),
) )
* 0.002 * 0.002
) )
@ -133,7 +141,8 @@ G_b5 = np.zeros(hidden_input5)
G_W6 = ( G_W6 = (
np.random.normal( np.random.normal(
size=(hidden_input5, hidden_input6), scale=(1.0 / np.sqrt(hidden_input5 / 2.0)) size=(hidden_input5, hidden_input6),
scale=(1.0 / np.sqrt(hidden_input5 / 2.0)),
) )
* 0.002 * 0.002
) )
@ -173,7 +182,6 @@ v16, m16 = 0, 0
v17, m17 = 0, 0 v17, m17 = 0, 0
v18, m18 = 0, 0 v18, m18 = 0, 0
beta_1, beta_2, eps = 0.9, 0.999, 0.00000001 beta_1, beta_2, eps = 0.9, 0.999, 0.00000001
print("--------- Started Training ----------") print("--------- Started Training ----------")

View File

@ -5,6 +5,8 @@ from bs4 import BeautifulSoup
from fake_useragent import UserAgent from fake_useragent import UserAgent
import requests import requests
if __name__ == "__main__":
print("Googling.....") print("Googling.....")
url = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) url = "https://www.google.com/search?q=" + " ".join(sys.argv[1:])
res = requests.get(url, headers={"UserAgent": UserAgent().random}) res = requests.get(url, headers={"UserAgent": UserAgent().random})