mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Remove code with side effects from main (#1577)
* Remove code with side effects from main When running tests withy pytest, some modules execute code in main scope and open plot or browser windows. Moves such code under `if __name__ == "__main__"`. * fixup! Format Python code with psf/black push
This commit is contained in:
parent
5616fa9e62
commit
12f69a86f5
@ -6,97 +6,97 @@ Requirements:
|
|||||||
Python:
|
Python:
|
||||||
- 3.5
|
- 3.5
|
||||||
"""
|
"""
|
||||||
# Create universe of discourse in python using linspace ()
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
|
|
||||||
|
|
||||||
# Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc).
|
|
||||||
import skfuzzy as fuzz
|
import skfuzzy as fuzz
|
||||||
|
|
||||||
abc1 = [0, 25, 50]
|
|
||||||
abc2 = [25, 50, 75]
|
|
||||||
young = fuzz.membership.trimf(X, abc1)
|
|
||||||
middle_aged = fuzz.membership.trimf(X, abc2)
|
|
||||||
|
|
||||||
# Compute the different operations using inbuilt functions.
|
if __name__ == "__main__":
|
||||||
one = np.ones(75)
|
# Create universe of discourse in python using linspace ()
|
||||||
zero = np.zeros((75,))
|
X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
|
||||||
# 1. Union = max(µA(x), µB(x))
|
|
||||||
union = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
|
|
||||||
# 2. Intersection = min(µA(x), µB(x))
|
|
||||||
intersection = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
|
|
||||||
# 3. Complement (A) = (1- min(µA(x))
|
|
||||||
complement_a = fuzz.fuzzy_not(young)
|
|
||||||
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
|
|
||||||
difference = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
|
|
||||||
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
|
|
||||||
alg_sum = young + middle_aged - (young * middle_aged)
|
|
||||||
# 6. Algebraic Product = (µA(x) * µB(x))
|
|
||||||
alg_product = young * middle_aged
|
|
||||||
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
|
|
||||||
bdd_sum = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
|
|
||||||
# 8. Bounded difference = min[0,(µA(x), µB(x))]
|
|
||||||
bdd_difference = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
|
|
||||||
|
|
||||||
# max-min composition
|
# Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc).
|
||||||
# max-product composition
|
abc1 = [0, 25, 50]
|
||||||
|
abc2 = [25, 50, 75]
|
||||||
|
young = fuzz.membership.trimf(X, abc1)
|
||||||
|
middle_aged = fuzz.membership.trimf(X, abc2)
|
||||||
|
|
||||||
|
# Compute the different operations using inbuilt functions.
|
||||||
|
one = np.ones(75)
|
||||||
|
zero = np.zeros((75,))
|
||||||
|
# 1. Union = max(µA(x), µB(x))
|
||||||
|
union = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
|
||||||
|
# 2. Intersection = min(µA(x), µB(x))
|
||||||
|
intersection = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
|
||||||
|
# 3. Complement (A) = (1- min(µA(x))
|
||||||
|
complement_a = fuzz.fuzzy_not(young)
|
||||||
|
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
|
||||||
|
difference = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
|
||||||
|
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
|
||||||
|
alg_sum = young + middle_aged - (young * middle_aged)
|
||||||
|
# 6. Algebraic Product = (µA(x) * µB(x))
|
||||||
|
alg_product = young * middle_aged
|
||||||
|
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
|
||||||
|
bdd_sum = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
|
||||||
|
# 8. Bounded difference = min[0,(µA(x), µB(x))]
|
||||||
|
bdd_difference = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
|
||||||
|
|
||||||
# Plot each set A, set B and each operation result using plot() and subplot().
|
# max-min composition
|
||||||
import matplotlib.pyplot as plt
|
# max-product composition
|
||||||
|
|
||||||
plt.figure()
|
# Plot each set A, set B and each operation result using plot() and subplot().
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
plt.subplot(4, 3, 1)
|
plt.figure()
|
||||||
plt.plot(X, young)
|
|
||||||
plt.title("Young")
|
|
||||||
plt.grid(True)
|
|
||||||
|
|
||||||
plt.subplot(4, 3, 2)
|
plt.subplot(4, 3, 1)
|
||||||
plt.plot(X, middle_aged)
|
plt.plot(X, young)
|
||||||
plt.title("Middle aged")
|
plt.title("Young")
|
||||||
plt.grid(True)
|
plt.grid(True)
|
||||||
|
|
||||||
plt.subplot(4, 3, 3)
|
plt.subplot(4, 3, 2)
|
||||||
plt.plot(X, union)
|
plt.plot(X, middle_aged)
|
||||||
plt.title("union")
|
plt.title("Middle aged")
|
||||||
plt.grid(True)
|
plt.grid(True)
|
||||||
|
|
||||||
plt.subplot(4, 3, 4)
|
plt.subplot(4, 3, 3)
|
||||||
plt.plot(X, intersection)
|
plt.plot(X, union)
|
||||||
plt.title("intersection")
|
plt.title("union")
|
||||||
plt.grid(True)
|
plt.grid(True)
|
||||||
|
|
||||||
plt.subplot(4, 3, 5)
|
plt.subplot(4, 3, 4)
|
||||||
plt.plot(X, complement_a)
|
plt.plot(X, intersection)
|
||||||
plt.title("complement_a")
|
plt.title("intersection")
|
||||||
plt.grid(True)
|
plt.grid(True)
|
||||||
|
|
||||||
plt.subplot(4, 3, 6)
|
plt.subplot(4, 3, 5)
|
||||||
plt.plot(X, difference)
|
plt.plot(X, complement_a)
|
||||||
plt.title("difference a/b")
|
plt.title("complement_a")
|
||||||
plt.grid(True)
|
plt.grid(True)
|
||||||
|
|
||||||
plt.subplot(4, 3, 7)
|
plt.subplot(4, 3, 6)
|
||||||
plt.plot(X, alg_sum)
|
plt.plot(X, difference)
|
||||||
plt.title("alg_sum")
|
plt.title("difference a/b")
|
||||||
plt.grid(True)
|
plt.grid(True)
|
||||||
|
|
||||||
plt.subplot(4, 3, 8)
|
plt.subplot(4, 3, 7)
|
||||||
plt.plot(X, alg_product)
|
plt.plot(X, alg_sum)
|
||||||
plt.title("alg_product")
|
plt.title("alg_sum")
|
||||||
plt.grid(True)
|
plt.grid(True)
|
||||||
|
|
||||||
plt.subplot(4, 3, 9)
|
plt.subplot(4, 3, 8)
|
||||||
plt.plot(X, bdd_sum)
|
plt.plot(X, alg_product)
|
||||||
plt.title("bdd_sum")
|
plt.title("alg_product")
|
||||||
plt.grid(True)
|
plt.grid(True)
|
||||||
|
|
||||||
plt.subplot(4, 3, 10)
|
plt.subplot(4, 3, 9)
|
||||||
plt.plot(X, bdd_difference)
|
plt.plot(X, bdd_sum)
|
||||||
plt.title("bdd_difference")
|
plt.title("bdd_sum")
|
||||||
plt.grid(True)
|
plt.grid(True)
|
||||||
|
|
||||||
plt.subplots_adjust(hspace=0.5)
|
plt.subplot(4, 3, 10)
|
||||||
plt.show()
|
plt.plot(X, bdd_difference)
|
||||||
|
plt.title("bdd_difference")
|
||||||
|
plt.grid(True)
|
||||||
|
|
||||||
|
plt.subplots_adjust(hspace=0.5)
|
||||||
|
plt.show()
|
||||||
|
@ -36,8 +36,9 @@ def viz_polymonial():
|
|||||||
return
|
return
|
||||||
|
|
||||||
|
|
||||||
viz_polymonial()
|
if __name__ == "__main__":
|
||||||
|
viz_polymonial()
|
||||||
|
|
||||||
# Predicting a new result with Polymonial Regression
|
# Predicting a new result with Polymonial Regression
|
||||||
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
|
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
|
||||||
# output should be 132148.43750003
|
# output should be 132148.43750003
|
||||||
|
@ -59,409 +59,139 @@ def plot(samples):
|
|||||||
return fig
|
return fig
|
||||||
|
|
||||||
|
|
||||||
# 1. Load Data and declare hyper
|
if __name__ == "__main__":
|
||||||
print("--------- Load Data ----------")
|
# 1. Load Data and declare hyper
|
||||||
mnist = input_data.read_data_sets("MNIST_data", one_hot=False)
|
print("--------- Load Data ----------")
|
||||||
temp = mnist.test
|
mnist = input_data.read_data_sets("MNIST_data", one_hot=False)
|
||||||
images, labels = temp.images, temp.labels
|
temp = mnist.test
|
||||||
images, labels = shuffle(np.asarray(images), np.asarray(labels))
|
images, labels = temp.images, temp.labels
|
||||||
num_epoch = 10
|
images, labels = shuffle(np.asarray(images), np.asarray(labels))
|
||||||
learing_rate = 0.00009
|
num_epoch = 10
|
||||||
G_input = 100
|
learing_rate = 0.00009
|
||||||
hidden_input, hidden_input2, hidden_input3 = 128, 256, 346
|
G_input = 100
|
||||||
hidden_input4, hidden_input5, hidden_input6 = 480, 560, 686
|
hidden_input, hidden_input2, hidden_input3 = 128, 256, 346
|
||||||
|
hidden_input4, hidden_input5, hidden_input6 = 480, 560, 686
|
||||||
|
|
||||||
|
print("--------- Declare Hyper Parameters ----------")
|
||||||
print("--------- Declare Hyper Parameters ----------")
|
# 2. Declare Weights
|
||||||
# 2. Declare Weights
|
D_W1 = (
|
||||||
D_W1 = (
|
np.random.normal(size=(784, hidden_input), scale=(1.0 / np.sqrt(784 / 2.0)))
|
||||||
np.random.normal(size=(784, hidden_input), scale=(1.0 / np.sqrt(784 / 2.0))) * 0.002
|
* 0.002
|
||||||
)
|
|
||||||
# D_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
|
||||||
D_b1 = np.zeros(hidden_input)
|
|
||||||
|
|
||||||
D_W2 = (
|
|
||||||
np.random.normal(size=(hidden_input, 1), scale=(1.0 / np.sqrt(hidden_input / 2.0)))
|
|
||||||
* 0.002
|
|
||||||
)
|
|
||||||
# D_b2 = np.random.normal(size=(1),scale=(1. / np.sqrt(1 / 2.))) *0.002
|
|
||||||
D_b2 = np.zeros(1)
|
|
||||||
|
|
||||||
|
|
||||||
G_W1 = (
|
|
||||||
np.random.normal(size=(G_input, hidden_input), scale=(1.0 / np.sqrt(G_input / 2.0)))
|
|
||||||
* 0.002
|
|
||||||
)
|
|
||||||
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
|
||||||
G_b1 = np.zeros(hidden_input)
|
|
||||||
|
|
||||||
G_W2 = (
|
|
||||||
np.random.normal(
|
|
||||||
size=(hidden_input, hidden_input2), scale=(1.0 / np.sqrt(hidden_input / 2.0))
|
|
||||||
)
|
)
|
||||||
* 0.002
|
# D_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||||||
)
|
D_b1 = np.zeros(hidden_input)
|
||||||
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
|
||||||
G_b2 = np.zeros(hidden_input2)
|
|
||||||
|
|
||||||
G_W3 = (
|
D_W2 = (
|
||||||
np.random.normal(
|
np.random.normal(
|
||||||
size=(hidden_input2, hidden_input3), scale=(1.0 / np.sqrt(hidden_input2 / 2.0))
|
size=(hidden_input, 1), scale=(1.0 / np.sqrt(hidden_input / 2.0))
|
||||||
)
|
|
||||||
* 0.002
|
|
||||||
)
|
|
||||||
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
|
||||||
G_b3 = np.zeros(hidden_input3)
|
|
||||||
|
|
||||||
G_W4 = (
|
|
||||||
np.random.normal(
|
|
||||||
size=(hidden_input3, hidden_input4), scale=(1.0 / np.sqrt(hidden_input3 / 2.0))
|
|
||||||
)
|
|
||||||
* 0.002
|
|
||||||
)
|
|
||||||
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
|
||||||
G_b4 = np.zeros(hidden_input4)
|
|
||||||
|
|
||||||
G_W5 = (
|
|
||||||
np.random.normal(
|
|
||||||
size=(hidden_input4, hidden_input5), scale=(1.0 / np.sqrt(hidden_input4 / 2.0))
|
|
||||||
)
|
|
||||||
* 0.002
|
|
||||||
)
|
|
||||||
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
|
||||||
G_b5 = np.zeros(hidden_input5)
|
|
||||||
|
|
||||||
G_W6 = (
|
|
||||||
np.random.normal(
|
|
||||||
size=(hidden_input5, hidden_input6), scale=(1.0 / np.sqrt(hidden_input5 / 2.0))
|
|
||||||
)
|
|
||||||
* 0.002
|
|
||||||
)
|
|
||||||
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
|
||||||
G_b6 = np.zeros(hidden_input6)
|
|
||||||
|
|
||||||
G_W7 = (
|
|
||||||
np.random.normal(
|
|
||||||
size=(hidden_input6, 784), scale=(1.0 / np.sqrt(hidden_input6 / 2.0))
|
|
||||||
)
|
|
||||||
* 0.002
|
|
||||||
)
|
|
||||||
# G_b2 = np.random.normal(size=(784),scale=(1. / np.sqrt(784 / 2.))) *0.002
|
|
||||||
G_b7 = np.zeros(784)
|
|
||||||
|
|
||||||
# 3. For Adam Optimzier
|
|
||||||
v1, m1 = 0, 0
|
|
||||||
v2, m2 = 0, 0
|
|
||||||
v3, m3 = 0, 0
|
|
||||||
v4, m4 = 0, 0
|
|
||||||
|
|
||||||
v5, m5 = 0, 0
|
|
||||||
v6, m6 = 0, 0
|
|
||||||
v7, m7 = 0, 0
|
|
||||||
v8, m8 = 0, 0
|
|
||||||
v9, m9 = 0, 0
|
|
||||||
v10, m10 = 0, 0
|
|
||||||
v11, m11 = 0, 0
|
|
||||||
v12, m12 = 0, 0
|
|
||||||
|
|
||||||
v13, m13 = 0, 0
|
|
||||||
v14, m14 = 0, 0
|
|
||||||
|
|
||||||
v15, m15 = 0, 0
|
|
||||||
v16, m16 = 0, 0
|
|
||||||
|
|
||||||
v17, m17 = 0, 0
|
|
||||||
v18, m18 = 0, 0
|
|
||||||
|
|
||||||
|
|
||||||
beta_1, beta_2, eps = 0.9, 0.999, 0.00000001
|
|
||||||
|
|
||||||
print("--------- Started Training ----------")
|
|
||||||
for iter in range(num_epoch):
|
|
||||||
|
|
||||||
random_int = np.random.randint(len(images) - 5)
|
|
||||||
current_image = np.expand_dims(images[random_int], axis=0)
|
|
||||||
|
|
||||||
# Func: Generate The first Fake Data
|
|
||||||
Z = np.random.uniform(-1.0, 1.0, size=[1, G_input])
|
|
||||||
Gl1 = Z.dot(G_W1) + G_b1
|
|
||||||
Gl1A = arctan(Gl1)
|
|
||||||
Gl2 = Gl1A.dot(G_W2) + G_b2
|
|
||||||
Gl2A = ReLu(Gl2)
|
|
||||||
Gl3 = Gl2A.dot(G_W3) + G_b3
|
|
||||||
Gl3A = arctan(Gl3)
|
|
||||||
|
|
||||||
Gl4 = Gl3A.dot(G_W4) + G_b4
|
|
||||||
Gl4A = ReLu(Gl4)
|
|
||||||
Gl5 = Gl4A.dot(G_W5) + G_b5
|
|
||||||
Gl5A = tanh(Gl5)
|
|
||||||
Gl6 = Gl5A.dot(G_W6) + G_b6
|
|
||||||
Gl6A = ReLu(Gl6)
|
|
||||||
Gl7 = Gl6A.dot(G_W7) + G_b7
|
|
||||||
|
|
||||||
current_fake_data = log(Gl7)
|
|
||||||
|
|
||||||
# Func: Forward Feed for Real data
|
|
||||||
Dl1_r = current_image.dot(D_W1) + D_b1
|
|
||||||
Dl1_rA = ReLu(Dl1_r)
|
|
||||||
Dl2_r = Dl1_rA.dot(D_W2) + D_b2
|
|
||||||
Dl2_rA = log(Dl2_r)
|
|
||||||
|
|
||||||
# Func: Forward Feed for Fake Data
|
|
||||||
Dl1_f = current_fake_data.dot(D_W1) + D_b1
|
|
||||||
Dl1_fA = ReLu(Dl1_f)
|
|
||||||
Dl2_f = Dl1_fA.dot(D_W2) + D_b2
|
|
||||||
Dl2_fA = log(Dl2_f)
|
|
||||||
|
|
||||||
# Func: Cost D
|
|
||||||
D_cost = -np.log(Dl2_rA) + np.log(1.0 - Dl2_fA)
|
|
||||||
|
|
||||||
# Func: Gradient
|
|
||||||
grad_f_w2_part_1 = 1 / (1.0 - Dl2_fA)
|
|
||||||
grad_f_w2_part_2 = d_log(Dl2_f)
|
|
||||||
grad_f_w2_part_3 = Dl1_fA
|
|
||||||
grad_f_w2 = grad_f_w2_part_3.T.dot(grad_f_w2_part_1 * grad_f_w2_part_2)
|
|
||||||
grad_f_b2 = grad_f_w2_part_1 * grad_f_w2_part_2
|
|
||||||
|
|
||||||
grad_f_w1_part_1 = (grad_f_w2_part_1 * grad_f_w2_part_2).dot(D_W2.T)
|
|
||||||
grad_f_w1_part_2 = d_ReLu(Dl1_f)
|
|
||||||
grad_f_w1_part_3 = current_fake_data
|
|
||||||
grad_f_w1 = grad_f_w1_part_3.T.dot(grad_f_w1_part_1 * grad_f_w1_part_2)
|
|
||||||
grad_f_b1 = grad_f_w1_part_1 * grad_f_w1_part_2
|
|
||||||
|
|
||||||
grad_r_w2_part_1 = -1 / Dl2_rA
|
|
||||||
grad_r_w2_part_2 = d_log(Dl2_r)
|
|
||||||
grad_r_w2_part_3 = Dl1_rA
|
|
||||||
grad_r_w2 = grad_r_w2_part_3.T.dot(grad_r_w2_part_1 * grad_r_w2_part_2)
|
|
||||||
grad_r_b2 = grad_r_w2_part_1 * grad_r_w2_part_2
|
|
||||||
|
|
||||||
grad_r_w1_part_1 = (grad_r_w2_part_1 * grad_r_w2_part_2).dot(D_W2.T)
|
|
||||||
grad_r_w1_part_2 = d_ReLu(Dl1_r)
|
|
||||||
grad_r_w1_part_3 = current_image
|
|
||||||
grad_r_w1 = grad_r_w1_part_3.T.dot(grad_r_w1_part_1 * grad_r_w1_part_2)
|
|
||||||
grad_r_b1 = grad_r_w1_part_1 * grad_r_w1_part_2
|
|
||||||
|
|
||||||
grad_w1 = grad_f_w1 + grad_r_w1
|
|
||||||
grad_b1 = grad_f_b1 + grad_r_b1
|
|
||||||
|
|
||||||
grad_w2 = grad_f_w2 + grad_r_w2
|
|
||||||
grad_b2 = grad_f_b2 + grad_r_b2
|
|
||||||
|
|
||||||
# ---- Update Gradient ----
|
|
||||||
m1 = beta_1 * m1 + (1 - beta_1) * grad_w1
|
|
||||||
v1 = beta_2 * v1 + (1 - beta_2) * grad_w1 ** 2
|
|
||||||
|
|
||||||
m2 = beta_1 * m2 + (1 - beta_1) * grad_b1
|
|
||||||
v2 = beta_2 * v2 + (1 - beta_2) * grad_b1 ** 2
|
|
||||||
|
|
||||||
m3 = beta_1 * m3 + (1 - beta_1) * grad_w2
|
|
||||||
v3 = beta_2 * v3 + (1 - beta_2) * grad_w2 ** 2
|
|
||||||
|
|
||||||
m4 = beta_1 * m4 + (1 - beta_1) * grad_b2
|
|
||||||
v4 = beta_2 * v4 + (1 - beta_2) * grad_b2 ** 2
|
|
||||||
|
|
||||||
D_W1 = D_W1 - (learing_rate / (np.sqrt(v1 / (1 - beta_2)) + eps)) * (
|
|
||||||
m1 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
D_b1 = D_b1 - (learing_rate / (np.sqrt(v2 / (1 - beta_2)) + eps)) * (
|
|
||||||
m2 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
|
|
||||||
D_W2 = D_W2 - (learing_rate / (np.sqrt(v3 / (1 - beta_2)) + eps)) * (
|
|
||||||
m3 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
D_b2 = D_b2 - (learing_rate / (np.sqrt(v4 / (1 - beta_2)) + eps)) * (
|
|
||||||
m4 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Func: Forward Feed for G
|
|
||||||
Z = np.random.uniform(-1.0, 1.0, size=[1, G_input])
|
|
||||||
Gl1 = Z.dot(G_W1) + G_b1
|
|
||||||
Gl1A = arctan(Gl1)
|
|
||||||
Gl2 = Gl1A.dot(G_W2) + G_b2
|
|
||||||
Gl2A = ReLu(Gl2)
|
|
||||||
Gl3 = Gl2A.dot(G_W3) + G_b3
|
|
||||||
Gl3A = arctan(Gl3)
|
|
||||||
|
|
||||||
Gl4 = Gl3A.dot(G_W4) + G_b4
|
|
||||||
Gl4A = ReLu(Gl4)
|
|
||||||
Gl5 = Gl4A.dot(G_W5) + G_b5
|
|
||||||
Gl5A = tanh(Gl5)
|
|
||||||
Gl6 = Gl5A.dot(G_W6) + G_b6
|
|
||||||
Gl6A = ReLu(Gl6)
|
|
||||||
Gl7 = Gl6A.dot(G_W7) + G_b7
|
|
||||||
|
|
||||||
current_fake_data = log(Gl7)
|
|
||||||
|
|
||||||
Dl1 = current_fake_data.dot(D_W1) + D_b1
|
|
||||||
Dl1_A = ReLu(Dl1)
|
|
||||||
Dl2 = Dl1_A.dot(D_W2) + D_b2
|
|
||||||
Dl2_A = log(Dl2)
|
|
||||||
|
|
||||||
# Func: Cost G
|
|
||||||
G_cost = -np.log(Dl2_A)
|
|
||||||
|
|
||||||
# Func: Gradient
|
|
||||||
grad_G_w7_part_1 = ((-1 / Dl2_A) * d_log(Dl2).dot(D_W2.T) * (d_ReLu(Dl1))).dot(
|
|
||||||
D_W1.T
|
|
||||||
)
|
|
||||||
grad_G_w7_part_2 = d_log(Gl7)
|
|
||||||
grad_G_w7_part_3 = Gl6A
|
|
||||||
grad_G_w7 = grad_G_w7_part_3.T.dot(grad_G_w7_part_1 * grad_G_w7_part_1)
|
|
||||||
grad_G_b7 = grad_G_w7_part_1 * grad_G_w7_part_2
|
|
||||||
|
|
||||||
grad_G_w6_part_1 = (grad_G_w7_part_1 * grad_G_w7_part_2).dot(G_W7.T)
|
|
||||||
grad_G_w6_part_2 = d_ReLu(Gl6)
|
|
||||||
grad_G_w6_part_3 = Gl5A
|
|
||||||
grad_G_w6 = grad_G_w6_part_3.T.dot(grad_G_w6_part_1 * grad_G_w6_part_2)
|
|
||||||
grad_G_b6 = grad_G_w6_part_1 * grad_G_w6_part_2
|
|
||||||
|
|
||||||
grad_G_w5_part_1 = (grad_G_w6_part_1 * grad_G_w6_part_2).dot(G_W6.T)
|
|
||||||
grad_G_w5_part_2 = d_tanh(Gl5)
|
|
||||||
grad_G_w5_part_3 = Gl4A
|
|
||||||
grad_G_w5 = grad_G_w5_part_3.T.dot(grad_G_w5_part_1 * grad_G_w5_part_2)
|
|
||||||
grad_G_b5 = grad_G_w5_part_1 * grad_G_w5_part_2
|
|
||||||
|
|
||||||
grad_G_w4_part_1 = (grad_G_w5_part_1 * grad_G_w5_part_2).dot(G_W5.T)
|
|
||||||
grad_G_w4_part_2 = d_ReLu(Gl4)
|
|
||||||
grad_G_w4_part_3 = Gl3A
|
|
||||||
grad_G_w4 = grad_G_w4_part_3.T.dot(grad_G_w4_part_1 * grad_G_w4_part_2)
|
|
||||||
grad_G_b4 = grad_G_w4_part_1 * grad_G_w4_part_2
|
|
||||||
|
|
||||||
grad_G_w3_part_1 = (grad_G_w4_part_1 * grad_G_w4_part_2).dot(G_W4.T)
|
|
||||||
grad_G_w3_part_2 = d_arctan(Gl3)
|
|
||||||
grad_G_w3_part_3 = Gl2A
|
|
||||||
grad_G_w3 = grad_G_w3_part_3.T.dot(grad_G_w3_part_1 * grad_G_w3_part_2)
|
|
||||||
grad_G_b3 = grad_G_w3_part_1 * grad_G_w3_part_2
|
|
||||||
|
|
||||||
grad_G_w2_part_1 = (grad_G_w3_part_1 * grad_G_w3_part_2).dot(G_W3.T)
|
|
||||||
grad_G_w2_part_2 = d_ReLu(Gl2)
|
|
||||||
grad_G_w2_part_3 = Gl1A
|
|
||||||
grad_G_w2 = grad_G_w2_part_3.T.dot(grad_G_w2_part_1 * grad_G_w2_part_2)
|
|
||||||
grad_G_b2 = grad_G_w2_part_1 * grad_G_w2_part_2
|
|
||||||
|
|
||||||
grad_G_w1_part_1 = (grad_G_w2_part_1 * grad_G_w2_part_2).dot(G_W2.T)
|
|
||||||
grad_G_w1_part_2 = d_arctan(Gl1)
|
|
||||||
grad_G_w1_part_3 = Z
|
|
||||||
grad_G_w1 = grad_G_w1_part_3.T.dot(grad_G_w1_part_1 * grad_G_w1_part_2)
|
|
||||||
grad_G_b1 = grad_G_w1_part_1 * grad_G_w1_part_2
|
|
||||||
|
|
||||||
# ---- Update Gradient ----
|
|
||||||
m5 = beta_1 * m5 + (1 - beta_1) * grad_G_w1
|
|
||||||
v5 = beta_2 * v5 + (1 - beta_2) * grad_G_w1 ** 2
|
|
||||||
|
|
||||||
m6 = beta_1 * m6 + (1 - beta_1) * grad_G_b1
|
|
||||||
v6 = beta_2 * v6 + (1 - beta_2) * grad_G_b1 ** 2
|
|
||||||
|
|
||||||
m7 = beta_1 * m7 + (1 - beta_1) * grad_G_w2
|
|
||||||
v7 = beta_2 * v7 + (1 - beta_2) * grad_G_w2 ** 2
|
|
||||||
|
|
||||||
m8 = beta_1 * m8 + (1 - beta_1) * grad_G_b2
|
|
||||||
v8 = beta_2 * v8 + (1 - beta_2) * grad_G_b2 ** 2
|
|
||||||
|
|
||||||
m9 = beta_1 * m9 + (1 - beta_1) * grad_G_w3
|
|
||||||
v9 = beta_2 * v9 + (1 - beta_2) * grad_G_w3 ** 2
|
|
||||||
|
|
||||||
m10 = beta_1 * m10 + (1 - beta_1) * grad_G_b3
|
|
||||||
v10 = beta_2 * v10 + (1 - beta_2) * grad_G_b3 ** 2
|
|
||||||
|
|
||||||
m11 = beta_1 * m11 + (1 - beta_1) * grad_G_w4
|
|
||||||
v11 = beta_2 * v11 + (1 - beta_2) * grad_G_w4 ** 2
|
|
||||||
|
|
||||||
m12 = beta_1 * m12 + (1 - beta_1) * grad_G_b4
|
|
||||||
v12 = beta_2 * v12 + (1 - beta_2) * grad_G_b4 ** 2
|
|
||||||
|
|
||||||
m13 = beta_1 * m13 + (1 - beta_1) * grad_G_w5
|
|
||||||
v13 = beta_2 * v13 + (1 - beta_2) * grad_G_w5 ** 2
|
|
||||||
|
|
||||||
m14 = beta_1 * m14 + (1 - beta_1) * grad_G_b5
|
|
||||||
v14 = beta_2 * v14 + (1 - beta_2) * grad_G_b5 ** 2
|
|
||||||
|
|
||||||
m15 = beta_1 * m15 + (1 - beta_1) * grad_G_w6
|
|
||||||
v15 = beta_2 * v15 + (1 - beta_2) * grad_G_w6 ** 2
|
|
||||||
|
|
||||||
m16 = beta_1 * m16 + (1 - beta_1) * grad_G_b6
|
|
||||||
v16 = beta_2 * v16 + (1 - beta_2) * grad_G_b6 ** 2
|
|
||||||
|
|
||||||
m17 = beta_1 * m17 + (1 - beta_1) * grad_G_w7
|
|
||||||
v17 = beta_2 * v17 + (1 - beta_2) * grad_G_w7 ** 2
|
|
||||||
|
|
||||||
m18 = beta_1 * m18 + (1 - beta_1) * grad_G_b7
|
|
||||||
v18 = beta_2 * v18 + (1 - beta_2) * grad_G_b7 ** 2
|
|
||||||
|
|
||||||
G_W1 = G_W1 - (learing_rate / (np.sqrt(v5 / (1 - beta_2)) + eps)) * (
|
|
||||||
m5 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
G_b1 = G_b1 - (learing_rate / (np.sqrt(v6 / (1 - beta_2)) + eps)) * (
|
|
||||||
m6 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
|
|
||||||
G_W2 = G_W2 - (learing_rate / (np.sqrt(v7 / (1 - beta_2)) + eps)) * (
|
|
||||||
m7 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
G_b2 = G_b2 - (learing_rate / (np.sqrt(v8 / (1 - beta_2)) + eps)) * (
|
|
||||||
m8 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
|
|
||||||
G_W3 = G_W3 - (learing_rate / (np.sqrt(v9 / (1 - beta_2)) + eps)) * (
|
|
||||||
m9 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
G_b3 = G_b3 - (learing_rate / (np.sqrt(v10 / (1 - beta_2)) + eps)) * (
|
|
||||||
m10 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
|
|
||||||
G_W4 = G_W4 - (learing_rate / (np.sqrt(v11 / (1 - beta_2)) + eps)) * (
|
|
||||||
m11 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
G_b4 = G_b4 - (learing_rate / (np.sqrt(v12 / (1 - beta_2)) + eps)) * (
|
|
||||||
m12 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
|
|
||||||
G_W5 = G_W5 - (learing_rate / (np.sqrt(v13 / (1 - beta_2)) + eps)) * (
|
|
||||||
m13 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
G_b5 = G_b5 - (learing_rate / (np.sqrt(v14 / (1 - beta_2)) + eps)) * (
|
|
||||||
m14 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
|
|
||||||
G_W6 = G_W6 - (learing_rate / (np.sqrt(v15 / (1 - beta_2)) + eps)) * (
|
|
||||||
m15 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
G_b6 = G_b6 - (learing_rate / (np.sqrt(v16 / (1 - beta_2)) + eps)) * (
|
|
||||||
m16 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
|
|
||||||
G_W7 = G_W7 - (learing_rate / (np.sqrt(v17 / (1 - beta_2)) + eps)) * (
|
|
||||||
m17 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
G_b7 = G_b7 - (learing_rate / (np.sqrt(v18 / (1 - beta_2)) + eps)) * (
|
|
||||||
m18 / (1 - beta_1)
|
|
||||||
)
|
|
||||||
|
|
||||||
# --- Print Error ----
|
|
||||||
# print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r')
|
|
||||||
|
|
||||||
if iter == 0:
|
|
||||||
learing_rate = learing_rate * 0.01
|
|
||||||
if iter == 40:
|
|
||||||
learing_rate = learing_rate * 0.01
|
|
||||||
|
|
||||||
# ---- Print to Out put ----
|
|
||||||
if iter % 10 == 0:
|
|
||||||
|
|
||||||
print(
|
|
||||||
"Current Iter: ",
|
|
||||||
iter,
|
|
||||||
" Current D cost:",
|
|
||||||
D_cost,
|
|
||||||
" Current G cost: ",
|
|
||||||
G_cost,
|
|
||||||
end="\r",
|
|
||||||
)
|
)
|
||||||
print("--------- Show Example Result See Tab Above ----------")
|
* 0.002
|
||||||
print("--------- Wait for the image to load ---------")
|
)
|
||||||
Z = np.random.uniform(-1.0, 1.0, size=[16, G_input])
|
# D_b2 = np.random.normal(size=(1),scale=(1. / np.sqrt(1 / 2.))) *0.002
|
||||||
|
D_b2 = np.zeros(1)
|
||||||
|
|
||||||
|
G_W1 = (
|
||||||
|
np.random.normal(
|
||||||
|
size=(G_input, hidden_input), scale=(1.0 / np.sqrt(G_input / 2.0))
|
||||||
|
)
|
||||||
|
* 0.002
|
||||||
|
)
|
||||||
|
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||||||
|
G_b1 = np.zeros(hidden_input)
|
||||||
|
|
||||||
|
G_W2 = (
|
||||||
|
np.random.normal(
|
||||||
|
size=(hidden_input, hidden_input2),
|
||||||
|
scale=(1.0 / np.sqrt(hidden_input / 2.0)),
|
||||||
|
)
|
||||||
|
* 0.002
|
||||||
|
)
|
||||||
|
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||||||
|
G_b2 = np.zeros(hidden_input2)
|
||||||
|
|
||||||
|
G_W3 = (
|
||||||
|
np.random.normal(
|
||||||
|
size=(hidden_input2, hidden_input3),
|
||||||
|
scale=(1.0 / np.sqrt(hidden_input2 / 2.0)),
|
||||||
|
)
|
||||||
|
* 0.002
|
||||||
|
)
|
||||||
|
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||||||
|
G_b3 = np.zeros(hidden_input3)
|
||||||
|
|
||||||
|
G_W4 = (
|
||||||
|
np.random.normal(
|
||||||
|
size=(hidden_input3, hidden_input4),
|
||||||
|
scale=(1.0 / np.sqrt(hidden_input3 / 2.0)),
|
||||||
|
)
|
||||||
|
* 0.002
|
||||||
|
)
|
||||||
|
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||||||
|
G_b4 = np.zeros(hidden_input4)
|
||||||
|
|
||||||
|
G_W5 = (
|
||||||
|
np.random.normal(
|
||||||
|
size=(hidden_input4, hidden_input5),
|
||||||
|
scale=(1.0 / np.sqrt(hidden_input4 / 2.0)),
|
||||||
|
)
|
||||||
|
* 0.002
|
||||||
|
)
|
||||||
|
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||||||
|
G_b5 = np.zeros(hidden_input5)
|
||||||
|
|
||||||
|
G_W6 = (
|
||||||
|
np.random.normal(
|
||||||
|
size=(hidden_input5, hidden_input6),
|
||||||
|
scale=(1.0 / np.sqrt(hidden_input5 / 2.0)),
|
||||||
|
)
|
||||||
|
* 0.002
|
||||||
|
)
|
||||||
|
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
|
||||||
|
G_b6 = np.zeros(hidden_input6)
|
||||||
|
|
||||||
|
G_W7 = (
|
||||||
|
np.random.normal(
|
||||||
|
size=(hidden_input6, 784), scale=(1.0 / np.sqrt(hidden_input6 / 2.0))
|
||||||
|
)
|
||||||
|
* 0.002
|
||||||
|
)
|
||||||
|
# G_b2 = np.random.normal(size=(784),scale=(1. / np.sqrt(784 / 2.))) *0.002
|
||||||
|
G_b7 = np.zeros(784)
|
||||||
|
|
||||||
|
# 3. For Adam Optimzier
|
||||||
|
v1, m1 = 0, 0
|
||||||
|
v2, m2 = 0, 0
|
||||||
|
v3, m3 = 0, 0
|
||||||
|
v4, m4 = 0, 0
|
||||||
|
|
||||||
|
v5, m5 = 0, 0
|
||||||
|
v6, m6 = 0, 0
|
||||||
|
v7, m7 = 0, 0
|
||||||
|
v8, m8 = 0, 0
|
||||||
|
v9, m9 = 0, 0
|
||||||
|
v10, m10 = 0, 0
|
||||||
|
v11, m11 = 0, 0
|
||||||
|
v12, m12 = 0, 0
|
||||||
|
|
||||||
|
v13, m13 = 0, 0
|
||||||
|
v14, m14 = 0, 0
|
||||||
|
|
||||||
|
v15, m15 = 0, 0
|
||||||
|
v16, m16 = 0, 0
|
||||||
|
|
||||||
|
v17, m17 = 0, 0
|
||||||
|
v18, m18 = 0, 0
|
||||||
|
|
||||||
|
beta_1, beta_2, eps = 0.9, 0.999, 0.00000001
|
||||||
|
|
||||||
|
print("--------- Started Training ----------")
|
||||||
|
for iter in range(num_epoch):
|
||||||
|
|
||||||
|
random_int = np.random.randint(len(images) - 5)
|
||||||
|
current_image = np.expand_dims(images[random_int], axis=0)
|
||||||
|
|
||||||
|
# Func: Generate The first Fake Data
|
||||||
|
Z = np.random.uniform(-1.0, 1.0, size=[1, G_input])
|
||||||
Gl1 = Z.dot(G_W1) + G_b1
|
Gl1 = Z.dot(G_W1) + G_b1
|
||||||
Gl1A = arctan(Gl1)
|
Gl1A = arctan(Gl1)
|
||||||
Gl2 = Gl1A.dot(G_W2) + G_b2
|
Gl2 = Gl1A.dot(G_W2) + G_b2
|
||||||
@ -479,20 +209,298 @@ for iter in range(num_epoch):
|
|||||||
|
|
||||||
current_fake_data = log(Gl7)
|
current_fake_data = log(Gl7)
|
||||||
|
|
||||||
fig = plot(current_fake_data)
|
# Func: Forward Feed for Real data
|
||||||
fig.savefig(
|
Dl1_r = current_image.dot(D_W1) + D_b1
|
||||||
"Click_Me_{}.png".format(
|
Dl1_rA = ReLu(Dl1_r)
|
||||||
str(iter).zfill(3)
|
Dl2_r = Dl1_rA.dot(D_W2) + D_b2
|
||||||
+ "_Ginput_"
|
Dl2_rA = log(Dl2_r)
|
||||||
+ str(G_input)
|
|
||||||
+ "_hiddenone"
|
# Func: Forward Feed for Fake Data
|
||||||
+ str(hidden_input)
|
Dl1_f = current_fake_data.dot(D_W1) + D_b1
|
||||||
+ "_hiddentwo"
|
Dl1_fA = ReLu(Dl1_f)
|
||||||
+ str(hidden_input2)
|
Dl2_f = Dl1_fA.dot(D_W2) + D_b2
|
||||||
+ "_LR_"
|
Dl2_fA = log(Dl2_f)
|
||||||
+ str(learing_rate)
|
|
||||||
),
|
# Func: Cost D
|
||||||
bbox_inches="tight",
|
D_cost = -np.log(Dl2_rA) + np.log(1.0 - Dl2_fA)
|
||||||
|
|
||||||
|
# Func: Gradient
|
||||||
|
grad_f_w2_part_1 = 1 / (1.0 - Dl2_fA)
|
||||||
|
grad_f_w2_part_2 = d_log(Dl2_f)
|
||||||
|
grad_f_w2_part_3 = Dl1_fA
|
||||||
|
grad_f_w2 = grad_f_w2_part_3.T.dot(grad_f_w2_part_1 * grad_f_w2_part_2)
|
||||||
|
grad_f_b2 = grad_f_w2_part_1 * grad_f_w2_part_2
|
||||||
|
|
||||||
|
grad_f_w1_part_1 = (grad_f_w2_part_1 * grad_f_w2_part_2).dot(D_W2.T)
|
||||||
|
grad_f_w1_part_2 = d_ReLu(Dl1_f)
|
||||||
|
grad_f_w1_part_3 = current_fake_data
|
||||||
|
grad_f_w1 = grad_f_w1_part_3.T.dot(grad_f_w1_part_1 * grad_f_w1_part_2)
|
||||||
|
grad_f_b1 = grad_f_w1_part_1 * grad_f_w1_part_2
|
||||||
|
|
||||||
|
grad_r_w2_part_1 = -1 / Dl2_rA
|
||||||
|
grad_r_w2_part_2 = d_log(Dl2_r)
|
||||||
|
grad_r_w2_part_3 = Dl1_rA
|
||||||
|
grad_r_w2 = grad_r_w2_part_3.T.dot(grad_r_w2_part_1 * grad_r_w2_part_2)
|
||||||
|
grad_r_b2 = grad_r_w2_part_1 * grad_r_w2_part_2
|
||||||
|
|
||||||
|
grad_r_w1_part_1 = (grad_r_w2_part_1 * grad_r_w2_part_2).dot(D_W2.T)
|
||||||
|
grad_r_w1_part_2 = d_ReLu(Dl1_r)
|
||||||
|
grad_r_w1_part_3 = current_image
|
||||||
|
grad_r_w1 = grad_r_w1_part_3.T.dot(grad_r_w1_part_1 * grad_r_w1_part_2)
|
||||||
|
grad_r_b1 = grad_r_w1_part_1 * grad_r_w1_part_2
|
||||||
|
|
||||||
|
grad_w1 = grad_f_w1 + grad_r_w1
|
||||||
|
grad_b1 = grad_f_b1 + grad_r_b1
|
||||||
|
|
||||||
|
grad_w2 = grad_f_w2 + grad_r_w2
|
||||||
|
grad_b2 = grad_f_b2 + grad_r_b2
|
||||||
|
|
||||||
|
# ---- Update Gradient ----
|
||||||
|
m1 = beta_1 * m1 + (1 - beta_1) * grad_w1
|
||||||
|
v1 = beta_2 * v1 + (1 - beta_2) * grad_w1 ** 2
|
||||||
|
|
||||||
|
m2 = beta_1 * m2 + (1 - beta_1) * grad_b1
|
||||||
|
v2 = beta_2 * v2 + (1 - beta_2) * grad_b1 ** 2
|
||||||
|
|
||||||
|
m3 = beta_1 * m3 + (1 - beta_1) * grad_w2
|
||||||
|
v3 = beta_2 * v3 + (1 - beta_2) * grad_w2 ** 2
|
||||||
|
|
||||||
|
m4 = beta_1 * m4 + (1 - beta_1) * grad_b2
|
||||||
|
v4 = beta_2 * v4 + (1 - beta_2) * grad_b2 ** 2
|
||||||
|
|
||||||
|
D_W1 = D_W1 - (learing_rate / (np.sqrt(v1 / (1 - beta_2)) + eps)) * (
|
||||||
|
m1 / (1 - beta_1)
|
||||||
)
|
)
|
||||||
# for complete explanation visit https://towardsdatascience.com/only-numpy-implementing-gan-general-adversarial-networks-and-adam-optimizer-using-numpy-with-2a7e4e032021
|
D_b1 = D_b1 - (learing_rate / (np.sqrt(v2 / (1 - beta_2)) + eps)) * (
|
||||||
# -- end code --
|
m2 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
|
||||||
|
D_W2 = D_W2 - (learing_rate / (np.sqrt(v3 / (1 - beta_2)) + eps)) * (
|
||||||
|
m3 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
D_b2 = D_b2 - (learing_rate / (np.sqrt(v4 / (1 - beta_2)) + eps)) * (
|
||||||
|
m4 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Func: Forward Feed for G
|
||||||
|
Z = np.random.uniform(-1.0, 1.0, size=[1, G_input])
|
||||||
|
Gl1 = Z.dot(G_W1) + G_b1
|
||||||
|
Gl1A = arctan(Gl1)
|
||||||
|
Gl2 = Gl1A.dot(G_W2) + G_b2
|
||||||
|
Gl2A = ReLu(Gl2)
|
||||||
|
Gl3 = Gl2A.dot(G_W3) + G_b3
|
||||||
|
Gl3A = arctan(Gl3)
|
||||||
|
|
||||||
|
Gl4 = Gl3A.dot(G_W4) + G_b4
|
||||||
|
Gl4A = ReLu(Gl4)
|
||||||
|
Gl5 = Gl4A.dot(G_W5) + G_b5
|
||||||
|
Gl5A = tanh(Gl5)
|
||||||
|
Gl6 = Gl5A.dot(G_W6) + G_b6
|
||||||
|
Gl6A = ReLu(Gl6)
|
||||||
|
Gl7 = Gl6A.dot(G_W7) + G_b7
|
||||||
|
|
||||||
|
current_fake_data = log(Gl7)
|
||||||
|
|
||||||
|
Dl1 = current_fake_data.dot(D_W1) + D_b1
|
||||||
|
Dl1_A = ReLu(Dl1)
|
||||||
|
Dl2 = Dl1_A.dot(D_W2) + D_b2
|
||||||
|
Dl2_A = log(Dl2)
|
||||||
|
|
||||||
|
# Func: Cost G
|
||||||
|
G_cost = -np.log(Dl2_A)
|
||||||
|
|
||||||
|
# Func: Gradient
|
||||||
|
grad_G_w7_part_1 = ((-1 / Dl2_A) * d_log(Dl2).dot(D_W2.T) * (d_ReLu(Dl1))).dot(
|
||||||
|
D_W1.T
|
||||||
|
)
|
||||||
|
grad_G_w7_part_2 = d_log(Gl7)
|
||||||
|
grad_G_w7_part_3 = Gl6A
|
||||||
|
grad_G_w7 = grad_G_w7_part_3.T.dot(grad_G_w7_part_1 * grad_G_w7_part_1)
|
||||||
|
grad_G_b7 = grad_G_w7_part_1 * grad_G_w7_part_2
|
||||||
|
|
||||||
|
grad_G_w6_part_1 = (grad_G_w7_part_1 * grad_G_w7_part_2).dot(G_W7.T)
|
||||||
|
grad_G_w6_part_2 = d_ReLu(Gl6)
|
||||||
|
grad_G_w6_part_3 = Gl5A
|
||||||
|
grad_G_w6 = grad_G_w6_part_3.T.dot(grad_G_w6_part_1 * grad_G_w6_part_2)
|
||||||
|
grad_G_b6 = grad_G_w6_part_1 * grad_G_w6_part_2
|
||||||
|
|
||||||
|
grad_G_w5_part_1 = (grad_G_w6_part_1 * grad_G_w6_part_2).dot(G_W6.T)
|
||||||
|
grad_G_w5_part_2 = d_tanh(Gl5)
|
||||||
|
grad_G_w5_part_3 = Gl4A
|
||||||
|
grad_G_w5 = grad_G_w5_part_3.T.dot(grad_G_w5_part_1 * grad_G_w5_part_2)
|
||||||
|
grad_G_b5 = grad_G_w5_part_1 * grad_G_w5_part_2
|
||||||
|
|
||||||
|
grad_G_w4_part_1 = (grad_G_w5_part_1 * grad_G_w5_part_2).dot(G_W5.T)
|
||||||
|
grad_G_w4_part_2 = d_ReLu(Gl4)
|
||||||
|
grad_G_w4_part_3 = Gl3A
|
||||||
|
grad_G_w4 = grad_G_w4_part_3.T.dot(grad_G_w4_part_1 * grad_G_w4_part_2)
|
||||||
|
grad_G_b4 = grad_G_w4_part_1 * grad_G_w4_part_2
|
||||||
|
|
||||||
|
grad_G_w3_part_1 = (grad_G_w4_part_1 * grad_G_w4_part_2).dot(G_W4.T)
|
||||||
|
grad_G_w3_part_2 = d_arctan(Gl3)
|
||||||
|
grad_G_w3_part_3 = Gl2A
|
||||||
|
grad_G_w3 = grad_G_w3_part_3.T.dot(grad_G_w3_part_1 * grad_G_w3_part_2)
|
||||||
|
grad_G_b3 = grad_G_w3_part_1 * grad_G_w3_part_2
|
||||||
|
|
||||||
|
grad_G_w2_part_1 = (grad_G_w3_part_1 * grad_G_w3_part_2).dot(G_W3.T)
|
||||||
|
grad_G_w2_part_2 = d_ReLu(Gl2)
|
||||||
|
grad_G_w2_part_3 = Gl1A
|
||||||
|
grad_G_w2 = grad_G_w2_part_3.T.dot(grad_G_w2_part_1 * grad_G_w2_part_2)
|
||||||
|
grad_G_b2 = grad_G_w2_part_1 * grad_G_w2_part_2
|
||||||
|
|
||||||
|
grad_G_w1_part_1 = (grad_G_w2_part_1 * grad_G_w2_part_2).dot(G_W2.T)
|
||||||
|
grad_G_w1_part_2 = d_arctan(Gl1)
|
||||||
|
grad_G_w1_part_3 = Z
|
||||||
|
grad_G_w1 = grad_G_w1_part_3.T.dot(grad_G_w1_part_1 * grad_G_w1_part_2)
|
||||||
|
grad_G_b1 = grad_G_w1_part_1 * grad_G_w1_part_2
|
||||||
|
|
||||||
|
# ---- Update Gradient ----
|
||||||
|
m5 = beta_1 * m5 + (1 - beta_1) * grad_G_w1
|
||||||
|
v5 = beta_2 * v5 + (1 - beta_2) * grad_G_w1 ** 2
|
||||||
|
|
||||||
|
m6 = beta_1 * m6 + (1 - beta_1) * grad_G_b1
|
||||||
|
v6 = beta_2 * v6 + (1 - beta_2) * grad_G_b1 ** 2
|
||||||
|
|
||||||
|
m7 = beta_1 * m7 + (1 - beta_1) * grad_G_w2
|
||||||
|
v7 = beta_2 * v7 + (1 - beta_2) * grad_G_w2 ** 2
|
||||||
|
|
||||||
|
m8 = beta_1 * m8 + (1 - beta_1) * grad_G_b2
|
||||||
|
v8 = beta_2 * v8 + (1 - beta_2) * grad_G_b2 ** 2
|
||||||
|
|
||||||
|
m9 = beta_1 * m9 + (1 - beta_1) * grad_G_w3
|
||||||
|
v9 = beta_2 * v9 + (1 - beta_2) * grad_G_w3 ** 2
|
||||||
|
|
||||||
|
m10 = beta_1 * m10 + (1 - beta_1) * grad_G_b3
|
||||||
|
v10 = beta_2 * v10 + (1 - beta_2) * grad_G_b3 ** 2
|
||||||
|
|
||||||
|
m11 = beta_1 * m11 + (1 - beta_1) * grad_G_w4
|
||||||
|
v11 = beta_2 * v11 + (1 - beta_2) * grad_G_w4 ** 2
|
||||||
|
|
||||||
|
m12 = beta_1 * m12 + (1 - beta_1) * grad_G_b4
|
||||||
|
v12 = beta_2 * v12 + (1 - beta_2) * grad_G_b4 ** 2
|
||||||
|
|
||||||
|
m13 = beta_1 * m13 + (1 - beta_1) * grad_G_w5
|
||||||
|
v13 = beta_2 * v13 + (1 - beta_2) * grad_G_w5 ** 2
|
||||||
|
|
||||||
|
m14 = beta_1 * m14 + (1 - beta_1) * grad_G_b5
|
||||||
|
v14 = beta_2 * v14 + (1 - beta_2) * grad_G_b5 ** 2
|
||||||
|
|
||||||
|
m15 = beta_1 * m15 + (1 - beta_1) * grad_G_w6
|
||||||
|
v15 = beta_2 * v15 + (1 - beta_2) * grad_G_w6 ** 2
|
||||||
|
|
||||||
|
m16 = beta_1 * m16 + (1 - beta_1) * grad_G_b6
|
||||||
|
v16 = beta_2 * v16 + (1 - beta_2) * grad_G_b6 ** 2
|
||||||
|
|
||||||
|
m17 = beta_1 * m17 + (1 - beta_1) * grad_G_w7
|
||||||
|
v17 = beta_2 * v17 + (1 - beta_2) * grad_G_w7 ** 2
|
||||||
|
|
||||||
|
m18 = beta_1 * m18 + (1 - beta_1) * grad_G_b7
|
||||||
|
v18 = beta_2 * v18 + (1 - beta_2) * grad_G_b7 ** 2
|
||||||
|
|
||||||
|
G_W1 = G_W1 - (learing_rate / (np.sqrt(v5 / (1 - beta_2)) + eps)) * (
|
||||||
|
m5 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
G_b1 = G_b1 - (learing_rate / (np.sqrt(v6 / (1 - beta_2)) + eps)) * (
|
||||||
|
m6 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
|
||||||
|
G_W2 = G_W2 - (learing_rate / (np.sqrt(v7 / (1 - beta_2)) + eps)) * (
|
||||||
|
m7 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
G_b2 = G_b2 - (learing_rate / (np.sqrt(v8 / (1 - beta_2)) + eps)) * (
|
||||||
|
m8 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
|
||||||
|
G_W3 = G_W3 - (learing_rate / (np.sqrt(v9 / (1 - beta_2)) + eps)) * (
|
||||||
|
m9 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
G_b3 = G_b3 - (learing_rate / (np.sqrt(v10 / (1 - beta_2)) + eps)) * (
|
||||||
|
m10 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
|
||||||
|
G_W4 = G_W4 - (learing_rate / (np.sqrt(v11 / (1 - beta_2)) + eps)) * (
|
||||||
|
m11 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
G_b4 = G_b4 - (learing_rate / (np.sqrt(v12 / (1 - beta_2)) + eps)) * (
|
||||||
|
m12 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
|
||||||
|
G_W5 = G_W5 - (learing_rate / (np.sqrt(v13 / (1 - beta_2)) + eps)) * (
|
||||||
|
m13 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
G_b5 = G_b5 - (learing_rate / (np.sqrt(v14 / (1 - beta_2)) + eps)) * (
|
||||||
|
m14 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
|
||||||
|
G_W6 = G_W6 - (learing_rate / (np.sqrt(v15 / (1 - beta_2)) + eps)) * (
|
||||||
|
m15 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
G_b6 = G_b6 - (learing_rate / (np.sqrt(v16 / (1 - beta_2)) + eps)) * (
|
||||||
|
m16 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
|
||||||
|
G_W7 = G_W7 - (learing_rate / (np.sqrt(v17 / (1 - beta_2)) + eps)) * (
|
||||||
|
m17 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
G_b7 = G_b7 - (learing_rate / (np.sqrt(v18 / (1 - beta_2)) + eps)) * (
|
||||||
|
m18 / (1 - beta_1)
|
||||||
|
)
|
||||||
|
|
||||||
|
# --- Print Error ----
|
||||||
|
# print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r')
|
||||||
|
|
||||||
|
if iter == 0:
|
||||||
|
learing_rate = learing_rate * 0.01
|
||||||
|
if iter == 40:
|
||||||
|
learing_rate = learing_rate * 0.01
|
||||||
|
|
||||||
|
# ---- Print to Out put ----
|
||||||
|
if iter % 10 == 0:
|
||||||
|
|
||||||
|
print(
|
||||||
|
"Current Iter: ",
|
||||||
|
iter,
|
||||||
|
" Current D cost:",
|
||||||
|
D_cost,
|
||||||
|
" Current G cost: ",
|
||||||
|
G_cost,
|
||||||
|
end="\r",
|
||||||
|
)
|
||||||
|
print("--------- Show Example Result See Tab Above ----------")
|
||||||
|
print("--------- Wait for the image to load ---------")
|
||||||
|
Z = np.random.uniform(-1.0, 1.0, size=[16, G_input])
|
||||||
|
|
||||||
|
Gl1 = Z.dot(G_W1) + G_b1
|
||||||
|
Gl1A = arctan(Gl1)
|
||||||
|
Gl2 = Gl1A.dot(G_W2) + G_b2
|
||||||
|
Gl2A = ReLu(Gl2)
|
||||||
|
Gl3 = Gl2A.dot(G_W3) + G_b3
|
||||||
|
Gl3A = arctan(Gl3)
|
||||||
|
|
||||||
|
Gl4 = Gl3A.dot(G_W4) + G_b4
|
||||||
|
Gl4A = ReLu(Gl4)
|
||||||
|
Gl5 = Gl4A.dot(G_W5) + G_b5
|
||||||
|
Gl5A = tanh(Gl5)
|
||||||
|
Gl6 = Gl5A.dot(G_W6) + G_b6
|
||||||
|
Gl6A = ReLu(Gl6)
|
||||||
|
Gl7 = Gl6A.dot(G_W7) + G_b7
|
||||||
|
|
||||||
|
current_fake_data = log(Gl7)
|
||||||
|
|
||||||
|
fig = plot(current_fake_data)
|
||||||
|
fig.savefig(
|
||||||
|
"Click_Me_{}.png".format(
|
||||||
|
str(iter).zfill(3)
|
||||||
|
+ "_Ginput_"
|
||||||
|
+ str(G_input)
|
||||||
|
+ "_hiddenone"
|
||||||
|
+ str(hidden_input)
|
||||||
|
+ "_hiddentwo"
|
||||||
|
+ str(hidden_input2)
|
||||||
|
+ "_LR_"
|
||||||
|
+ str(learing_rate)
|
||||||
|
),
|
||||||
|
bbox_inches="tight",
|
||||||
|
)
|
||||||
|
# for complete explanation visit https://towardsdatascience.com/only-numpy-implementing-gan-general-adversarial-networks-and-adam-optimizer-using-numpy-with-2a7e4e032021
|
||||||
|
# -- end code --
|
||||||
|
@ -5,16 +5,18 @@ from bs4 import BeautifulSoup
|
|||||||
from fake_useragent import UserAgent
|
from fake_useragent import UserAgent
|
||||||
import requests
|
import requests
|
||||||
|
|
||||||
print("Googling.....")
|
|
||||||
url = "https://www.google.com/search?q=" + " ".join(sys.argv[1:])
|
|
||||||
res = requests.get(url, headers={"UserAgent": UserAgent().random})
|
|
||||||
# res.raise_for_status()
|
|
||||||
with open("project1a.html", "wb") as out_file: # only for knowing the class
|
|
||||||
for data in res.iter_content(10000):
|
|
||||||
out_file.write(data)
|
|
||||||
soup = BeautifulSoup(res.text, "html.parser")
|
|
||||||
links = list(soup.select(".eZt8xd"))[:5]
|
|
||||||
|
|
||||||
print(len(links))
|
if __name__ == "__main__":
|
||||||
for link in links:
|
print("Googling.....")
|
||||||
webbrowser.open(f"http://google.com{link.get('href')}")
|
url = "https://www.google.com/search?q=" + " ".join(sys.argv[1:])
|
||||||
|
res = requests.get(url, headers={"UserAgent": UserAgent().random})
|
||||||
|
# res.raise_for_status()
|
||||||
|
with open("project1a.html", "wb") as out_file: # only for knowing the class
|
||||||
|
for data in res.iter_content(10000):
|
||||||
|
out_file.write(data)
|
||||||
|
soup = BeautifulSoup(res.text, "html.parser")
|
||||||
|
links = list(soup.select(".eZt8xd"))[:5]
|
||||||
|
|
||||||
|
print(len(links))
|
||||||
|
for link in links:
|
||||||
|
webbrowser.open(f"http://google.com{link.get('href')}")
|
||||||
|
Loading…
Reference in New Issue
Block a user