From 17de908d1ad5a3eb7eb0c850e64394b62e4674c3 Mon Sep 17 00:00:00 2001 From: Achal Jain Date: Mon, 9 Oct 2023 01:11:30 +0530 Subject: [PATCH] Added Median of Medians Algorithm (#9864) * Added Median of Medians Algorithm * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update median_of_medians.py as per requested changes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- searches/median_of_medians.py | 107 ++++++++++++++++++++++++++++++++++ 1 file changed, 107 insertions(+) create mode 100644 searches/median_of_medians.py diff --git a/searches/median_of_medians.py b/searches/median_of_medians.py new file mode 100644 index 000000000..a8011a34a --- /dev/null +++ b/searches/median_of_medians.py @@ -0,0 +1,107 @@ +""" +A Python implementation of the Median of Medians algorithm +to select pivots for quick_select, which is efficient for +calculating the value that would appear in the index of a +list if it would be sorted, even if it is not already +sorted. Search in time complexity O(n) at any rank +deterministically +https://en.wikipedia.org/wiki/Median_of_medians +""" + + +def median_of_five(arr: list) -> int: + """ + Return the median of the input list + :param arr: Array to find median of + :return: median of arr + + >>> median_of_five([2, 4, 5, 7, 899]) + 5 + >>> median_of_five([5, 7, 899, 54, 32]) + 32 + >>> median_of_five([5, 4, 3, 2]) + 4 + >>> median_of_five([3, 5, 7, 10, 2]) + 5 + """ + arr = sorted(arr) + return arr[len(arr) // 2] + + +def median_of_medians(arr: list) -> int: + """ + Return a pivot to partition data on by calculating + Median of medians of input data + :param arr: The data to be checked (a list) + :return: median of medians of input array + + >>> median_of_medians([2, 4, 5, 7, 899, 54, 32]) + 54 + >>> median_of_medians([5, 7, 899, 54, 32]) + 32 + >>> median_of_medians([5, 4, 3, 2]) + 4 + >>> median_of_medians([3, 5, 7, 10, 2, 12]) + 12 + """ + + if len(arr) <= 5: + return median_of_five(arr) + medians = [] + i = 0 + while i < len(arr): + if (i + 4) <= len(arr): + medians.append(median_of_five(arr[i:].copy())) + else: + medians.append(median_of_five(arr[i : i + 5].copy())) + i += 5 + return median_of_medians(medians) + + +def quick_select(arr: list, target: int) -> int: + """ + Two way partition the data into smaller and greater lists, + in relationship to the pivot + :param arr: The data to be searched (a list) + :param target: The rank to be searched + :return: element at rank target + + >>> quick_select([2, 4, 5, 7, 899, 54, 32], 5) + 32 + >>> quick_select([2, 4, 5, 7, 899, 54, 32], 1) + 2 + >>> quick_select([5, 4, 3, 2], 2) + 3 + >>> quick_select([3, 5, 7, 10, 2, 12], 3) + 5 + """ + + # Invalid Input + if target > len(arr): + return -1 + + # x is the estimated pivot by median of medians algorithm + x = median_of_medians(arr) + left = [] + right = [] + check = False + for i in range(len(arr)): + if arr[i] < x: + left.append(arr[i]) + elif arr[i] > x: + right.append(arr[i]) + elif arr[i] == x and not check: + check = True + else: + right.append(arr[i]) + rank_x = len(left) + 1 + if rank_x == target: + answer = x + elif rank_x > target: + answer = quick_select(left, target) + elif rank_x < target: + answer = quick_select(right, target - rank_x) + return answer + + +print(median_of_five([5, 4, 3, 2]))