Merge pull request #3 from TheAlgorithms/master

merge from main.
This commit is contained in:
Anurag Kumar 2017-10-26 12:13:04 +05:30 committed by GitHub
commit 1e9d903eca
29 changed files with 1173 additions and 124 deletions

267
Graphs/basic-graphs.py Normal file
View File

@ -0,0 +1,267 @@
# Accept No. of Nodes and edges
n, m = map(int, raw_input().split(" "))
# Initialising Dictionary of edges
g = {}
for i in xrange(n):
g[i + 1] = []
"""
--------------------------------------------------------------------------------
Accepting edges of Unweighted Directed Graphs
--------------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y = map(int, raw_input().split(" "))
g[x].append(y)
"""
--------------------------------------------------------------------------------
Accepting edges of Unweighted Undirected Graphs
--------------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y = map(int, raw_input().split(" "))
g[x].append(y)
g[y].append(x)
"""
--------------------------------------------------------------------------------
Accepting edges of Weighted Undirected Graphs
--------------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y, r = map(int, raw_input().split(" "))
g[x].append([y, r])
g[y].append([x, r])
"""
--------------------------------------------------------------------------------
Depth First Search.
Args : G - Dictionary of edges
s - Starting Node
Vars : vis - Set of visited nodes
S - Traversal Stack
--------------------------------------------------------------------------------
"""
def dfs(G, s):
vis, S = set([s]), [s]
print s
while S:
flag = 0
for i in G[S[-1]]:
if i not in vis:
S.append(i)
vis.add(i)
flag = 1
print i
break
if not flag:
S.pop()
"""
--------------------------------------------------------------------------------
Breadth First Search.
Args : G - Dictionary of edges
s - Starting Node
Vars : vis - Set of visited nodes
Q - Traveral Stack
--------------------------------------------------------------------------------
"""
from collections import deque
def bfs(G, s):
vis, Q = set([s]), deque([s])
print s
while Q:
u = Q.popleft()
for v in G[u]:
if v not in vis:
vis.add(v)
Q.append(v)
print v
"""
--------------------------------------------------------------------------------
Dijkstra's shortest path Algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to every other node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def dijk(G, s):
dist, known, path = {s: 0}, set(), {s: 0}
while True:
if len(known) == len(G) - 1:
break
mini = 100000
for i in dist:
if i not in known and dist[i] < mini:
mini = dist[i]
u = i
known.add(u)
for v in G[u]:
if v[0] not in known:
if dist[u] + v[1] < dist.get(v[0], 100000):
dist[v[0]] = dist[u] + v[1]
path[v[0]] = u
for i in dist:
if i != s:
print dist[i]
"""
--------------------------------------------------------------------------------
Topological Sort
--------------------------------------------------------------------------------
"""
from collections import deque
def topo(G, ind=None, Q=[1]):
if ind == None:
ind = [0] * (len(G) + 1) # SInce oth Index is ignored
for u in G:
for v in G[u]:
ind[v] += 1
Q = deque()
for i in G:
if ind[i] == 0:
Q.append(i)
if len(Q) == 0:
return
v = Q.popleft()
print v
for w in G[v]:
ind[w] -= 1
if ind[w] == 0:
Q.append(w)
topo(G, ind, Q)
"""
--------------------------------------------------------------------------------
Reading an Adjacency matrix
--------------------------------------------------------------------------------
"""
def adjm():
n, a = input(), []
for i in xrange(n):
a.append(map(int, raw_input().split()))
return a, n
"""
--------------------------------------------------------------------------------
Floyd Warshall's algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to every other node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def floy((A, n)):
dist = list(A)
path = [[0] * n for i in xrange(n)]
for k in xrange(n):
for i in xrange(n):
for j in xrange(n):
if dist[i][j] > dist[i][k] + dist[k][j]:
dist[i][j] = dist[i][k] + dist[k][j]
path[i][k] = k
print dist
"""
--------------------------------------------------------------------------------
Prim's MST Algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to nearest node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def prim(G, s):
dist, known, path = {s: 0}, set(), {s: 0}
while True:
if len(known) == len(G) - 1:
break
mini = 100000
for i in dist:
if i not in known and dist[i] < mini:
mini = dist[i]
u = i
known.add(u)
for v in G[u]:
if v[0] not in known:
if v[1] < dist.get(v[0], 100000):
dist[v[0]] = v[1]
path[v[0]] = u
"""
--------------------------------------------------------------------------------
Accepting Edge list
Vars : n - Number of nodes
m - Number of edges
Returns : l - Edge list
n - Number of Nodes
--------------------------------------------------------------------------------
"""
def edglist():
n, m = map(int, raw_input().split(" "))
l = []
for i in xrange(m):
l.append(map(int, raw_input().split(' ')))
return l, n
"""
--------------------------------------------------------------------------------
Kruskal's MST Algorithm
Args : E - Edge list
n - Number of Nodes
Vars : s - Set of all nodes as unique disjoint sets (initially)
--------------------------------------------------------------------------------
"""
def krusk((E, n)):
# Sort edges on the basis of distance
E.sort(reverse=True, key=lambda x: x[2])
s = [set([i]) for i in range(1, n + 1)]
while True:
if len(s) == 1:
break
print s
x = E.pop()
for i in xrange(len(s)):
if x[0] in s[i]:
break
for j in xrange(len(s)):
if x[1] in s[j]:
if i == j:
break
s[j].update(s[i])
s.pop(i)
break

View File

@ -0,0 +1,12 @@
'''
Problem Statement:
If we list all the natural numbers below 10 that are multiples of 3 or 5,
we get 3,5,6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below N.
'''
n = int(raw_input().strip())
sum=0;
for a in range(3,n):
if(a%3==0 or a%5==0):
sum+=a
print sum;

View File

@ -0,0 +1,15 @@
'''
Problem Statement:
If we list all the natural numbers below 10 that are multiples of 3 or 5,
we get 3,5,6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below N.
'''
n = int(raw_input().strip())
sum = 0
terms = (n-1)/3
sum+= ((terms)*(6+(terms-1)*3))/2 #sum of an A.P.
terms = (n-1)/5
sum+= ((terms)*(10+(terms-1)*5))/2
terms = (n-1)/15
sum-= ((terms)*(30+(terms-1)*15))/2
print sum

View File

@ -0,0 +1,42 @@
'''
Problem Statement:
If we list all the natural numbers below 10 that are multiples of 3 or 5,
we get 3,5,6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below N.
'''
'''
This solution is based on the pattern that the successive numbers in the series follow: 0+3,+2,+1,+3,+1,+2,+3.
'''
n = int(raw_input().strip())
sum=0;
num=0;
while(1):
num+=3
if(num>=n):
break
sum+=num
num+=2
if(num>=n):
break
sum+=num
num+=1
if(num>=n):
break
sum+=num
num+=3
if(num>=n):
break
sum+=num
num+=1
if(num>=n):
break
sum+=num
num+=2
if(num>=n):
break
sum+=num
num+=3
if(num>=n):
break
sum+=num
print sum;

View File

@ -0,0 +1,18 @@
'''
Problem:
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2,
the first 10 terms will be:
1,2,3,5,8,13,21,34,55,89,..
By considering the terms in the Fibonacci sequence whose values do not exceed n, find the sum of the even-valued terms.
e.g. for n=10, we have {2,8}, sum is 10.
'''
n = int(raw_input().strip())
i=1; j=2; sum=0
while(j<=n):
if((j&1)==0): #can also use (j%2==0)
sum+=j
temp=i
i=j
j=temp+i
print sum

View File

@ -0,0 +1,38 @@
'''
Problem:
The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N?
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
'''
import math
def isprime(no):
if(no==2):
return True
elif (no%2==0):
return False
sq = int(math.sqrt(no))+1
for i in range(3,sq,2):
if(no%i==0):
return False
return True
max=0
n=int(input())
if(isprime(n)):
print n
else:
while (n%2==0):
n=n/2
if(isprime(n)):
print n
else:
n1 = int(math.sqrt(n))+1
for i in range(3,n1,2):
if(n%i==0):
if(isprime(n/i)):
max=n/i
break
elif(isprime(i)):
max=i
print max

View File

@ -0,0 +1,16 @@
'''
Problem:
The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N?
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
'''
n=int(input())
prime=1
i=2
while(i*i<=n):
while(n%i==0):
prime=i
n/=i
i+=1
if(n>1):
prime=n
print prime

View File

@ -0,0 +1,15 @@
'''
Problem:
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 x 99.
Find the largest palindrome made from the product of two 3-digit numbers which is less than N.
'''
n=int(input())
for i in range(n-1,10000,-1):
temp=str(i)
if(temp==temp[::-1]):
j=999
while(j!=99):
if((i%j==0) and (len(str(i/j))==3)):
print i
exit(0)
j-=1

View File

@ -0,0 +1,18 @@
'''
Problem:
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 x 99.
Find the largest palindrome made from the product of two 3-digit numbers which is less than N.
'''
arr = []
for i in range(999,100,-1):
for j in range(999,100,-1):
t = str(i*j)
if t == t[::-1]:
arr.append(i*j)
arr.sort()
n=int(input())
for i in arr[::-1]:
if(i<n):
print i
exit(0)

View File

@ -0,0 +1,20 @@
'''
Problem:
2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
What is the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to N?
'''
n = int(input())
i = 0
while 1:
i+=n*(n-1)
nfound=0
for j in range(2,n):
if (i%j != 0):
nfound=1
break
if(nfound==0):
if(i==0):
i=1
print i
break

View File

@ -0,0 +1,19 @@
# -*- coding: utf-8 -*-
'''
Problem:
The sum of the squares of the first ten natural numbers is,
1^2 + 2^2 + ... + 10^2 = 385
The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)^2 = 552 = 3025
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 385 = 2640.
Find the difference between the sum of the squares of the first N natural numbers and the square of the sum.
'''
suma = 0
sumb = 0
n = int(input())
for i in range(1,n+1):
suma += i**2
sumb += i
sum = sumb**2 - suma
print sum

View File

@ -0,0 +1,15 @@
# -*- coding: utf-8 -*-
'''
Problem:
The sum of the squares of the first ten natural numbers is,
1^2 + 2^2 + ... + 10^2 = 385
The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)^2 = 552 = 3025
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 385 = 2640.
Find the difference between the sum of the squares of the first N natural numbers and the square of the sum.
'''
n = int(input())
suma = n*(n+1)/2
suma **= 2
sumb = n*(n+1)*(2*n+1)/6
print suma-sumb

View File

@ -0,0 +1,29 @@
'''
By listing the first six prime numbers:
2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
What is the Nth prime number?
'''
from math import sqrt
def isprime(n):
if (n==2):
return True
elif (n%2==0):
return False
else:
sq = int(sqrt(n))+1
for i in range(3,sq,2):
if(n%i==0):
return False
return True
n = int(input())
i=0
j=1
while(i!=n and j<3):
j+=1
if (isprime(j)):
i+=1
while(i!=n):
j+=2
if(isprime(j)):
i+=1
print j

39
Project Euler/README.md Normal file
View File

@ -0,0 +1,39 @@
# ProjectEuler
Problems are taken from https://projecteuler.net/.
Project Euler is a series of challenging mathematical/computer programming problems that will require more than just mathematical
insights to solve. Project Euler is ideal for mathematicians who are learning to code.
Here the efficiency of your code is also checked.
I've tried to provide all the best possible solutions.
PROBLEMS:
1. If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3,5,6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below N.
2. Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2,
the first 10 terms will be:
1,2,3,5,8,13,21,34,55,89,..
By considering the terms in the Fibonacci sequence whose values do not exceed n, find the sum of the even-valued terms.
e.g. for n=10, we have {2,8}, sum is 10.
3. The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N?
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
4. A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.
Find the largest palindrome made from the product of two 3-digit numbers which is less than N.
5. 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
What is the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to N?
6. The sum of the squares of the first ten natural numbers is,
1^2 + 2^2 + ... + 10^2 = 385
The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)^2 = 552 = 3025
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 385 = 2640.
Find the difference between the sum of the squares of the first N natural numbers and the square of the sum.
7. By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
What is the Nth prime number?

1
data_structures/Arrays Normal file
View File

@ -0,0 +1 @@
Arrays implimentation using python programming.

View File

@ -0,0 +1,28 @@
class FenwickTree:
def __init__(self, SIZE): # create fenwick tree with size SIZE
self.Size = SIZE
self.ft = [0 for i in range (0,SIZE)]
def update(self, i, val): # update data (adding) in index i in O(lg N)
while (i < self.Size):
self.ft[i] += val
i += i & (-i)
def query(self, i): # query cumulative data from index 0 to i in O(lg N)
ret = 0
while (i > 0):
ret += self.ft[i]
i -= i & (-i)
return ret
if __name__ == '__main__':
f = FenwickTree(100)
f.update(1,20)
f.update(4,4)
print (f.query(1))
print (f.query(3))
print (f.query(4))
f.update(2,-5)
print (f.query(1))
print (f.query(3))

View File

@ -0,0 +1,90 @@
import math
class SegmentTree:
def __init__(self, N):
self.N = N
self.st = [0 for i in range(0,4*N)] # approximate the overall size of segment tree with array N
self.lazy = [0 for i in range(0,4*N)] # create array to store lazy update
self.flag = [0 for i in range(0,4*N)] # flag for lazy update
def left(self, idx):
return idx*2
def right(self, idx):
return idx*2 + 1
def build(self, idx, l, r, A):
if l==r:
self.st[idx] = A[l-1]
else :
mid = (l+r)//2
self.build(self.left(idx),l,mid, A)
self.build(self.right(idx),mid+1,r, A)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
# update with O(lg N) (Normal segment tree without lazy update will take O(Nlg N) for each update)
def update(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b]
if self.flag[idx] == True:
self.st[idx] = self.lazy[idx]
self.flag[idx] = False
if l!=r:
self.lazy[self.left(idx)] = self.lazy[idx]
self.lazy[self.right(idx)] = self.lazy[idx]
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
if r < a or l > b:
return True
if l >= a and r <= b :
self.st[idx] = val
if l!=r:
self.lazy[self.left(idx)] = val
self.lazy[self.right(idx)] = val
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
return True
mid = (l+r)//2
self.update(self.left(idx),l,mid,a,b,val)
self.update(self.right(idx),mid+1,r,a,b,val)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
return True
# query with O(lg N)
def query(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b]
if self.flag[idx] == True:
self.st[idx] = self.lazy[idx]
self.flag[idx] = False
if l != r:
self.lazy[self.left(idx)] = self.lazy[idx]
self.lazy[self.right(idx)] = self.lazy[idx]
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
if r < a or l > b:
return -math.inf
if l >= a and r <= b:
return self.st[idx]
mid = (l+r)//2
q1 = self.query(self.left(idx),l,mid,a,b)
q2 = self.query(self.right(idx),mid+1,r,a,b)
return max(q1,q2)
def showData(self):
showList = []
for i in range(1,N+1):
showList += [self.query(1, 1, self.N, i, i)]
print (showList)
if __name__ == '__main__':
A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8]
N = 15
segt = SegmentTree(N)
segt.build(1,1,N,A)
print (segt.query(1,1,N,4,6))
print (segt.query(1,1,N,7,11))
print (segt.query(1,1,N,7,12))
segt.update(1,1,N,1,3,111)
print (segt.query(1,1,N,1,15))
segt.update(1,1,N,7,8,235)
segt.showData()

View File

@ -0,0 +1,64 @@
import math
class SegmentTree:
def __init__(self, N):
self.N = N
self.st = [0 for i in range(0,4*N)] # approximate the overall size of segment tree with array N
def left(self, idx):
return idx*2
def right(self, idx):
return idx*2 + 1
def build(self, idx, l, r, A):
if l==r:
self.st[idx] = A[l-1]
else :
mid = (l+r)//2
self.build(self.left(idx),l,mid, A)
self.build(self.right(idx),mid+1,r, A)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
def update(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b]
if r < a or l > b:
return True
if l == r :
self.st[idx] = val
return True
mid = (l+r)//2
self.update(self.left(idx),l,mid,a,b,val)
self.update(self.right(idx),mid+1,r,a,b,val)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
return True
def query(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b]
if r < a or l > b:
return -math.inf
if l >= a and r <= b:
return self.st[idx]
mid = (l+r)//2
q1 = self.query(self.left(idx),l,mid,a,b)
q2 = self.query(self.right(idx),mid+1,r,a,b)
return max(q1,q2)
def showData(self):
showList = []
for i in range(1,N+1):
showList += [self.query(1, 1, self.N, i, i)]
print (showList)
if __name__ == '__main__':
A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8]
N = 15
segt = SegmentTree(N)
segt.build(1,1,N,A)
print (segt.query(1,1,N,4,6))
print (segt.query(1,1,N,7,11))
print (segt.query(1,1,N,7,12))
segt.update(1,1,N,1,3,111)
print (segt.query(1,1,N,1,15))
segt.update(1,1,N,7,8,235)
segt.showData()

View File

@ -1,103 +0,0 @@
'''
A binary search Tree
'''
class Node:
def __init__(self, label):
self.label = label
self.left = None
self.right = None
def getLabel(self):
return self.label
def setLabel(self, label):
self.label = label
def getLeft(self):
return self.left
def setLeft(self, left):
self.left = left
def getRight(self):
return self.right
def setRight(self, right):
self.right = right
class BinarySearchTree:
def __init__(self):
self.root = None
def insert(self, label):
# Create a new Node
node = Node(label)
if self.empty():
self.root = node
else:
dad_node = None
curr_node = self.root
while True:
if curr_node is not None:
dad_node = curr_node
if node.getLabel() < curr_node.getLabel():
curr_node = curr_node.getLeft()
else:
curr_node = curr_node.getRight()
else:
if node.getLabel() < dad_node.getLabel():
dad_node.setLeft(node)
else:
dad_node.setRight(node)
break
def empty(self):
if self.root is None:
return True
return False
def preShow(self, curr_node):
if curr_node is not None:
print(curr_node.getLabel(), end=" ")
self.preShow(curr_node.getLeft())
self.preShow(curr_node.getRight())
def getRoot(self):
return self.root
'''
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
'''
t = BinarySearchTree()
t.insert(8)
t.insert(3)
t.insert(1)
t.insert(6)
t.insert(4)
t.insert(7)
t.insert(10)
t.insert(14)
t.insert(13)
t.preShow(t.getRoot())

View File

@ -0,0 +1,130 @@
'''
A binary search Tree
'''
class Node:
def __init__(self, label):
self.label = label
self.left = None
self.right = None
def getLabel(self):
return self.label
def setLabel(self, label):
self.label = label
def getLeft(self):
return self.left
def setLeft(self, left):
self.left = left
def getRight(self):
return self.right
def setRight(self, right):
self.right = right
class BinarySearchTree:
def __init__(self):
self.root = None
def insert(self, label):
# Create a new Node
new_node = Node(label)
# If Tree is empty
if self.empty():
self.root = new_node
else:
#If Tree is not empty
parent_node = None
curr_node = self.root
#While we don't get to a leaf
while curr_node is not None:
#We keep reference of the parent node
parent_node = curr_node
#If node label is less than current node
if new_node.getLabel() < curr_node.getLabel():
#We go left
curr_node = curr_node.getLeft()
else:
#Else we go right
curr_node = curr_node.getRight()
#We insert the new node in a leaf
if new_node.getLabel() < parent_node.getLabel():
parent_node.setLeft(new_node)
else:
parent_node.setRight(new_node)
def getNode(self, label):
curr_node = None
#If the tree is not empty
if(not self.empty()):
#Get tree root
curr_node = self.getRoot()
#While we don't find the node we look for
#I am using lazy evaluation here to avoid NoneType Attribute error
while curr_node is not None and curr_node.getLabel() is not label:
#If node label is less than current node
if label < curr_node.getLabel():
#We go left
curr_node = curr_node.getLeft()
else:
#Else we go right
curr_node = curr_node.getRight()
return curr_node
def empty(self):
if self.root is None:
return True
return False
def preShow(self, curr_node):
if curr_node is not None:
print(curr_node.getLabel())
self.preShow(curr_node.getLeft())
self.preShow(curr_node.getRight())
def getRoot(self):
return self.root
'''
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
'''
if __name__ == "__main__":
t = BinarySearchTree()
t.insert(8)
t.insert(3)
t.insert(1)
t.insert(6)
t.insert(4)
t.insert(7)
t.insert(10)
t.insert(14)
t.insert(13)
t.preShow(t.getRoot())
if(t.getNode(6) is not None):
print("The label 6 exists")
else:
print("The label 6 doesn't exist")
if(t.getNode(-1) is not None):
print("The label -1 exists")
else:
print("The label -1 doesn't exist")

View File

@ -47,4 +47,20 @@ class Linked_List:
return Head
def isEmpty(Head):
return Head is None #Return if Head is none
return Head is None #Return if Head is none
def reverse(Head):
prev = None
current = Head
while(current):
# Store the current node's next node.
next_node = current.next
# Make the current node's next point backwards
current.next = prev
# Make the previous node be the current node
prev = current
# Make the current node the next node (to progress iteration)
current = next_node
# Return prev in order to put the head at the end
Head = prev

View File

@ -0,0 +1,39 @@
# Python code to demonstrate working of
# extend(), extendleft(), rotate(), reverse()
# importing "collections" for deque operations
import collections
# initializing deque
de = collections.deque([1, 2, 3,])
# using extend() to add numbers to right end
# adds 4,5,6 to right end
de.extend([4,5,6])
# printing modified deque
print ("The deque after extending deque at end is : ")
print (de)
# using extendleft() to add numbers to left end
# adds 7,8,9 to right end
de.extendleft([7,8,9])
# printing modified deque
print ("The deque after extending deque at beginning is : ")
print (de)
# using rotate() to rotate the deque
# rotates by 3 to left
de.rotate(-3)
# printing modified deque
print ("The deque after rotating deque is : ")
print (de)
# using reverse() to reverse the deque
de.reverse()
# printing modified deque
print ("The deque after reversing deque is : ")
print (de)

View File

View File

@ -0,0 +1,77 @@
from union_find import UnionFind
import unittest
class TestUnionFind(unittest.TestCase):
def test_init_with_valid_size(self):
uf = UnionFind(5)
self.assertEqual(uf.size, 5)
def test_init_with_invalid_size(self):
with self.assertRaises(ValueError):
uf = UnionFind(0)
with self.assertRaises(ValueError):
uf = UnionFind(-5)
def test_union_with_valid_values(self):
uf = UnionFind(10)
for i in range(11):
for j in range(11):
uf.union(i, j)
def test_union_with_invalid_values(self):
uf = UnionFind(10)
with self.assertRaises(ValueError):
uf.union(-1, 1)
with self.assertRaises(ValueError):
uf.union(11, 1)
def test_same_set_with_valid_values(self):
uf = UnionFind(10)
for i in range(11):
for j in range(11):
if i == j:
self.assertTrue(uf.same_set(i, j))
else:
self.assertFalse(uf.same_set(i, j))
uf.union(1, 2)
self.assertTrue(uf.same_set(1, 2))
uf.union(3, 4)
self.assertTrue(uf.same_set(3, 4))
self.assertFalse(uf.same_set(1, 3))
self.assertFalse(uf.same_set(1, 4))
self.assertFalse(uf.same_set(2, 3))
self.assertFalse(uf.same_set(2, 4))
uf.union(1, 3)
self.assertTrue(uf.same_set(1, 3))
self.assertTrue(uf.same_set(1, 4))
self.assertTrue(uf.same_set(2, 3))
self.assertTrue(uf.same_set(2, 4))
uf.union(4, 10)
self.assertTrue(uf.same_set(1, 10))
self.assertTrue(uf.same_set(2, 10))
self.assertTrue(uf.same_set(3, 10))
self.assertTrue(uf.same_set(4, 10))
def test_same_set_with_invalid_values(self):
uf = UnionFind(10)
with self.assertRaises(ValueError):
uf.same_set(-1, 1)
with self.assertRaises(ValueError):
uf.same_set(11, 0)
if __name__ == '__main__':
unittest.main()

View File

@ -0,0 +1,87 @@
class UnionFind():
"""
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
The union-find is a disjoint-set data structure
You can merge two sets and tell if one set belongs to
another one.
It's used on the Kruskal Algorithm
(https://en.wikipedia.org/wiki/Kruskal%27s_algorithm)
The elements are in range [0, size]
"""
def __init__(self, size):
if size <= 0:
raise ValueError("size should be greater than 0")
self.size = size
# The below plus 1 is because we are using elements
# in range [0, size]. It makes more sense.
# Every set begins with only itself
self.root = [i for i in range(size+1)]
# This is used for heuristic union by rank
self.weight = [0 for i in range(size+1)]
def union(self, u, v):
"""
Union of the sets u and v.
Complexity: log(n).
Amortized complexity: < 5 (it's very fast).
"""
self._validate_element_range(u, "u")
self._validate_element_range(v, "v")
if u == v:
return
# Using union by rank will guarantee the
# log(n) complexity
rootu = self._root(u)
rootv = self._root(v)
weight_u = self.weight[rootu]
weight_v = self.weight[rootv]
if weight_u >= weight_v:
self.root[rootv] = rootu
if weight_u == weight_v:
self.weight[rootu] += 1
else:
self.root[rootu] = rootv
def same_set(self, u, v):
"""
Return true if the elements u and v belongs to
the same set
"""
self._validate_element_range(u, "u")
self._validate_element_range(v, "v")
return self._root(u) == self._root(v)
def _root(self, u):
"""
Get the element set root.
This uses the heuristic path compression
See wikipedia article for more details.
"""
if u != self.root[u]:
self.root[u] = self._root(self.root[u])
return self.root[u]
def _validate_element_range(self, u, element_name):
"""
Raises ValueError if element is not in range
"""
if u < 0 or u > self.size:
msg = ("element {0} with value {1} "
"should be in range [0~{2}]")\
.format(element_name, u, self.size)
raise ValueError(msg)

View File

@ -0,0 +1,37 @@
import math
class Graph:
def __init__(self, N = 0): # a graph with Node 0,1,...,N-1
self.N = N
self.W = [[math.inf for j in range(0,N)] for i in range(0,N)] # adjacency matrix for weight
self.dp = [[math.inf for j in range(0,N)] for i in range(0,N)] # dp[i][j] stores minimum distance from i to j
def addEdge(self, u, v, w):
self.dp[u][v] = w;
def floyd_warshall(self):
for k in range(0,self.N):
for i in range(0,self.N):
for j in range(0,self.N):
self.dp[i][j] = min(self.dp[i][j], self.dp[i][k] + self.dp[k][j])
def showMin(self, u, v):
return self.dp[u][v]
if __name__ == '__main__':
graph = Graph(5)
graph.addEdge(0,2,9)
graph.addEdge(0,4,10)
graph.addEdge(1,3,5)
graph.addEdge(2,3,7)
graph.addEdge(3,0,10)
graph.addEdge(3,1,2)
graph.addEdge(3,2,1)
graph.addEdge(3,4,6)
graph.addEdge(4,1,3)
graph.addEdge(4,2,4)
graph.addEdge(4,3,9)
graph.floyd_warshall()
graph.showMin(1,4)
graph.showMin(0,3)

View File

@ -18,28 +18,20 @@ returns true if S is nested and false otherwise.
def is_balanced(S):
stack = []
open_brackets = set({'(', '[', '{'})
closed_brackets = set({')', ']', '}'})
open_to_closed = dict({'{':'}', '[':']', '(':')'})
for i in range(len(S)):
if S[i] == '(' or S[i] == '{' or S[i] == '[':
if S[i] in open_brackets:
stack.append(S[i])
else:
if len(stack) > 0:
pair = stack.pop() + S[i]
if pair != '[]' and pair != '()' and pair != '{}':
return False
else:
elif S[i] in closed_brackets:
if len(stack) == 0 or (len(stack) > 0 and open_to_closed[stack.pop()] != S[i]):
return False
if len(stack) == 0:
return True
return False
return len(stack) == 0
def main():
@ -48,7 +40,7 @@ def main():
if is_balanced(S):
print(S, "is balanced")
else:
print(S, "is not balanced")

28
other/two-sum.py Normal file
View File

@ -0,0 +1,28 @@
"""
Given an array of integers, return indices of the two numbers such that they add up to a specific target.
You may assume that each input would have exactly one solution, and you may not use the same element twice.
Example:
Given nums = [2, 7, 11, 15], target = 9,
Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].
"""
def twoSum(nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
chk_map = {}
for index, val in enumerate(nums):
compl = target - val
if compl in chk_map:
indices = [chk_map[compl], index]
print(indices)
return [indices]
else:
chk_map[val] = index
return False