mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
commit
1e9d903eca
267
Graphs/basic-graphs.py
Normal file
267
Graphs/basic-graphs.py
Normal file
@ -0,0 +1,267 @@
|
||||
# Accept No. of Nodes and edges
|
||||
n, m = map(int, raw_input().split(" "))
|
||||
|
||||
# Initialising Dictionary of edges
|
||||
g = {}
|
||||
for i in xrange(n):
|
||||
g[i + 1] = []
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Accepting edges of Unweighted Directed Graphs
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
for _ in xrange(m):
|
||||
x, y = map(int, raw_input().split(" "))
|
||||
g[x].append(y)
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Accepting edges of Unweighted Undirected Graphs
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
for _ in xrange(m):
|
||||
x, y = map(int, raw_input().split(" "))
|
||||
g[x].append(y)
|
||||
g[y].append(x)
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Accepting edges of Weighted Undirected Graphs
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
for _ in xrange(m):
|
||||
x, y, r = map(int, raw_input().split(" "))
|
||||
g[x].append([y, r])
|
||||
g[y].append([x, r])
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Depth First Search.
|
||||
Args : G - Dictionary of edges
|
||||
s - Starting Node
|
||||
Vars : vis - Set of visited nodes
|
||||
S - Traversal Stack
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def dfs(G, s):
|
||||
vis, S = set([s]), [s]
|
||||
print s
|
||||
while S:
|
||||
flag = 0
|
||||
for i in G[S[-1]]:
|
||||
if i not in vis:
|
||||
S.append(i)
|
||||
vis.add(i)
|
||||
flag = 1
|
||||
print i
|
||||
break
|
||||
if not flag:
|
||||
S.pop()
|
||||
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Breadth First Search.
|
||||
Args : G - Dictionary of edges
|
||||
s - Starting Node
|
||||
Vars : vis - Set of visited nodes
|
||||
Q - Traveral Stack
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
from collections import deque
|
||||
|
||||
|
||||
def bfs(G, s):
|
||||
vis, Q = set([s]), deque([s])
|
||||
print s
|
||||
while Q:
|
||||
u = Q.popleft()
|
||||
for v in G[u]:
|
||||
if v not in vis:
|
||||
vis.add(v)
|
||||
Q.append(v)
|
||||
print v
|
||||
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Dijkstra's shortest path Algorithm
|
||||
Args : G - Dictionary of edges
|
||||
s - Starting Node
|
||||
Vars : dist - Dictionary storing shortest distance from s to every other node
|
||||
known - Set of knows nodes
|
||||
path - Preceding node in path
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def dijk(G, s):
|
||||
dist, known, path = {s: 0}, set(), {s: 0}
|
||||
while True:
|
||||
if len(known) == len(G) - 1:
|
||||
break
|
||||
mini = 100000
|
||||
for i in dist:
|
||||
if i not in known and dist[i] < mini:
|
||||
mini = dist[i]
|
||||
u = i
|
||||
known.add(u)
|
||||
for v in G[u]:
|
||||
if v[0] not in known:
|
||||
if dist[u] + v[1] < dist.get(v[0], 100000):
|
||||
dist[v[0]] = dist[u] + v[1]
|
||||
path[v[0]] = u
|
||||
for i in dist:
|
||||
if i != s:
|
||||
print dist[i]
|
||||
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Topological Sort
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
from collections import deque
|
||||
|
||||
|
||||
def topo(G, ind=None, Q=[1]):
|
||||
if ind == None:
|
||||
ind = [0] * (len(G) + 1) # SInce oth Index is ignored
|
||||
for u in G:
|
||||
for v in G[u]:
|
||||
ind[v] += 1
|
||||
Q = deque()
|
||||
for i in G:
|
||||
if ind[i] == 0:
|
||||
Q.append(i)
|
||||
if len(Q) == 0:
|
||||
return
|
||||
v = Q.popleft()
|
||||
print v
|
||||
for w in G[v]:
|
||||
ind[w] -= 1
|
||||
if ind[w] == 0:
|
||||
Q.append(w)
|
||||
topo(G, ind, Q)
|
||||
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Reading an Adjacency matrix
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def adjm():
|
||||
n, a = input(), []
|
||||
for i in xrange(n):
|
||||
a.append(map(int, raw_input().split()))
|
||||
return a, n
|
||||
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Floyd Warshall's algorithm
|
||||
Args : G - Dictionary of edges
|
||||
s - Starting Node
|
||||
Vars : dist - Dictionary storing shortest distance from s to every other node
|
||||
known - Set of knows nodes
|
||||
path - Preceding node in path
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def floy((A, n)):
|
||||
dist = list(A)
|
||||
path = [[0] * n for i in xrange(n)]
|
||||
for k in xrange(n):
|
||||
for i in xrange(n):
|
||||
for j in xrange(n):
|
||||
if dist[i][j] > dist[i][k] + dist[k][j]:
|
||||
dist[i][j] = dist[i][k] + dist[k][j]
|
||||
path[i][k] = k
|
||||
print dist
|
||||
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Prim's MST Algorithm
|
||||
Args : G - Dictionary of edges
|
||||
s - Starting Node
|
||||
Vars : dist - Dictionary storing shortest distance from s to nearest node
|
||||
known - Set of knows nodes
|
||||
path - Preceding node in path
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def prim(G, s):
|
||||
dist, known, path = {s: 0}, set(), {s: 0}
|
||||
while True:
|
||||
if len(known) == len(G) - 1:
|
||||
break
|
||||
mini = 100000
|
||||
for i in dist:
|
||||
if i not in known and dist[i] < mini:
|
||||
mini = dist[i]
|
||||
u = i
|
||||
known.add(u)
|
||||
for v in G[u]:
|
||||
if v[0] not in known:
|
||||
if v[1] < dist.get(v[0], 100000):
|
||||
dist[v[0]] = v[1]
|
||||
path[v[0]] = u
|
||||
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Accepting Edge list
|
||||
Vars : n - Number of nodes
|
||||
m - Number of edges
|
||||
Returns : l - Edge list
|
||||
n - Number of Nodes
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def edglist():
|
||||
n, m = map(int, raw_input().split(" "))
|
||||
l = []
|
||||
for i in xrange(m):
|
||||
l.append(map(int, raw_input().split(' ')))
|
||||
return l, n
|
||||
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Kruskal's MST Algorithm
|
||||
Args : E - Edge list
|
||||
n - Number of Nodes
|
||||
Vars : s - Set of all nodes as unique disjoint sets (initially)
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def krusk((E, n)):
|
||||
# Sort edges on the basis of distance
|
||||
E.sort(reverse=True, key=lambda x: x[2])
|
||||
s = [set([i]) for i in range(1, n + 1)]
|
||||
while True:
|
||||
if len(s) == 1:
|
||||
break
|
||||
print s
|
||||
x = E.pop()
|
||||
for i in xrange(len(s)):
|
||||
if x[0] in s[i]:
|
||||
break
|
||||
for j in xrange(len(s)):
|
||||
if x[1] in s[j]:
|
||||
if i == j:
|
||||
break
|
||||
s[j].update(s[i])
|
||||
s.pop(i)
|
||||
break
|
12
Project Euler/Problem 01/sol1.py
Normal file
12
Project Euler/Problem 01/sol1.py
Normal file
@ -0,0 +1,12 @@
|
||||
'''
|
||||
Problem Statement:
|
||||
If we list all the natural numbers below 10 that are multiples of 3 or 5,
|
||||
we get 3,5,6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below N.
|
||||
'''
|
||||
n = int(raw_input().strip())
|
||||
sum=0;
|
||||
for a in range(3,n):
|
||||
if(a%3==0 or a%5==0):
|
||||
sum+=a
|
||||
print sum;
|
15
Project Euler/Problem 01/sol2.py
Normal file
15
Project Euler/Problem 01/sol2.py
Normal file
@ -0,0 +1,15 @@
|
||||
'''
|
||||
Problem Statement:
|
||||
If we list all the natural numbers below 10 that are multiples of 3 or 5,
|
||||
we get 3,5,6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below N.
|
||||
'''
|
||||
n = int(raw_input().strip())
|
||||
sum = 0
|
||||
terms = (n-1)/3
|
||||
sum+= ((terms)*(6+(terms-1)*3))/2 #sum of an A.P.
|
||||
terms = (n-1)/5
|
||||
sum+= ((terms)*(10+(terms-1)*5))/2
|
||||
terms = (n-1)/15
|
||||
sum-= ((terms)*(30+(terms-1)*15))/2
|
||||
print sum
|
42
Project Euler/Problem 01/sol3.py
Normal file
42
Project Euler/Problem 01/sol3.py
Normal file
@ -0,0 +1,42 @@
|
||||
'''
|
||||
Problem Statement:
|
||||
If we list all the natural numbers below 10 that are multiples of 3 or 5,
|
||||
we get 3,5,6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below N.
|
||||
'''
|
||||
'''
|
||||
This solution is based on the pattern that the successive numbers in the series follow: 0+3,+2,+1,+3,+1,+2,+3.
|
||||
'''
|
||||
n = int(raw_input().strip())
|
||||
sum=0;
|
||||
num=0;
|
||||
while(1):
|
||||
num+=3
|
||||
if(num>=n):
|
||||
break
|
||||
sum+=num
|
||||
num+=2
|
||||
if(num>=n):
|
||||
break
|
||||
sum+=num
|
||||
num+=1
|
||||
if(num>=n):
|
||||
break
|
||||
sum+=num
|
||||
num+=3
|
||||
if(num>=n):
|
||||
break
|
||||
sum+=num
|
||||
num+=1
|
||||
if(num>=n):
|
||||
break
|
||||
sum+=num
|
||||
num+=2
|
||||
if(num>=n):
|
||||
break
|
||||
sum+=num
|
||||
num+=3
|
||||
if(num>=n):
|
||||
break
|
||||
sum+=num
|
||||
print sum;
|
18
Project Euler/Problem 02/sol1.py
Normal file
18
Project Euler/Problem 02/sol1.py
Normal file
@ -0,0 +1,18 @@
|
||||
'''
|
||||
Problem:
|
||||
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2,
|
||||
the first 10 terms will be:
|
||||
1,2,3,5,8,13,21,34,55,89,..
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed n, find the sum of the even-valued terms.
|
||||
e.g. for n=10, we have {2,8}, sum is 10.
|
||||
'''
|
||||
|
||||
n = int(raw_input().strip())
|
||||
i=1; j=2; sum=0
|
||||
while(j<=n):
|
||||
if((j&1)==0): #can also use (j%2==0)
|
||||
sum+=j
|
||||
temp=i
|
||||
i=j
|
||||
j=temp+i
|
||||
print sum
|
38
Project Euler/Problem 03/sol1.py
Normal file
38
Project Euler/Problem 03/sol1.py
Normal file
@ -0,0 +1,38 @@
|
||||
'''
|
||||
Problem:
|
||||
The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N?
|
||||
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
|
||||
'''
|
||||
|
||||
import math
|
||||
|
||||
def isprime(no):
|
||||
if(no==2):
|
||||
return True
|
||||
elif (no%2==0):
|
||||
return False
|
||||
sq = int(math.sqrt(no))+1
|
||||
for i in range(3,sq,2):
|
||||
if(no%i==0):
|
||||
return False
|
||||
return True
|
||||
|
||||
max=0
|
||||
n=int(input())
|
||||
if(isprime(n)):
|
||||
print n
|
||||
else:
|
||||
while (n%2==0):
|
||||
n=n/2
|
||||
if(isprime(n)):
|
||||
print n
|
||||
else:
|
||||
n1 = int(math.sqrt(n))+1
|
||||
for i in range(3,n1,2):
|
||||
if(n%i==0):
|
||||
if(isprime(n/i)):
|
||||
max=n/i
|
||||
break
|
||||
elif(isprime(i)):
|
||||
max=i
|
||||
print max
|
16
Project Euler/Problem 03/sol2.py
Normal file
16
Project Euler/Problem 03/sol2.py
Normal file
@ -0,0 +1,16 @@
|
||||
'''
|
||||
Problem:
|
||||
The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N?
|
||||
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
|
||||
'''
|
||||
n=int(input())
|
||||
prime=1
|
||||
i=2
|
||||
while(i*i<=n):
|
||||
while(n%i==0):
|
||||
prime=i
|
||||
n/=i
|
||||
i+=1
|
||||
if(n>1):
|
||||
prime=n
|
||||
print prime
|
15
Project Euler/Problem 04/sol1.py
Normal file
15
Project Euler/Problem 04/sol1.py
Normal file
@ -0,0 +1,15 @@
|
||||
'''
|
||||
Problem:
|
||||
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 x 99.
|
||||
Find the largest palindrome made from the product of two 3-digit numbers which is less than N.
|
||||
'''
|
||||
n=int(input())
|
||||
for i in range(n-1,10000,-1):
|
||||
temp=str(i)
|
||||
if(temp==temp[::-1]):
|
||||
j=999
|
||||
while(j!=99):
|
||||
if((i%j==0) and (len(str(i/j))==3)):
|
||||
print i
|
||||
exit(0)
|
||||
j-=1
|
18
Project Euler/Problem 04/sol2.py
Normal file
18
Project Euler/Problem 04/sol2.py
Normal file
@ -0,0 +1,18 @@
|
||||
'''
|
||||
Problem:
|
||||
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 x 99.
|
||||
Find the largest palindrome made from the product of two 3-digit numbers which is less than N.
|
||||
'''
|
||||
arr = []
|
||||
for i in range(999,100,-1):
|
||||
for j in range(999,100,-1):
|
||||
t = str(i*j)
|
||||
if t == t[::-1]:
|
||||
arr.append(i*j)
|
||||
arr.sort()
|
||||
|
||||
n=int(input())
|
||||
for i in arr[::-1]:
|
||||
if(i<n):
|
||||
print i
|
||||
exit(0)
|
20
Project Euler/Problem 05/sol1.py
Normal file
20
Project Euler/Problem 05/sol1.py
Normal file
@ -0,0 +1,20 @@
|
||||
'''
|
||||
Problem:
|
||||
2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
|
||||
What is the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to N?
|
||||
'''
|
||||
|
||||
n = int(input())
|
||||
i = 0
|
||||
while 1:
|
||||
i+=n*(n-1)
|
||||
nfound=0
|
||||
for j in range(2,n):
|
||||
if (i%j != 0):
|
||||
nfound=1
|
||||
break
|
||||
if(nfound==0):
|
||||
if(i==0):
|
||||
i=1
|
||||
print i
|
||||
break
|
19
Project Euler/Problem 06/sol1.py
Normal file
19
Project Euler/Problem 06/sol1.py
Normal file
@ -0,0 +1,19 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
'''
|
||||
Problem:
|
||||
The sum of the squares of the first ten natural numbers is,
|
||||
1^2 + 2^2 + ... + 10^2 = 385
|
||||
The square of the sum of the first ten natural numbers is,
|
||||
(1 + 2 + ... + 10)^2 = 552 = 3025
|
||||
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.
|
||||
Find the difference between the sum of the squares of the first N natural numbers and the square of the sum.
|
||||
'''
|
||||
|
||||
suma = 0
|
||||
sumb = 0
|
||||
n = int(input())
|
||||
for i in range(1,n+1):
|
||||
suma += i**2
|
||||
sumb += i
|
||||
sum = sumb**2 - suma
|
||||
print sum
|
15
Project Euler/Problem 06/sol2.py
Normal file
15
Project Euler/Problem 06/sol2.py
Normal file
@ -0,0 +1,15 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
'''
|
||||
Problem:
|
||||
The sum of the squares of the first ten natural numbers is,
|
||||
1^2 + 2^2 + ... + 10^2 = 385
|
||||
The square of the sum of the first ten natural numbers is,
|
||||
(1 + 2 + ... + 10)^2 = 552 = 3025
|
||||
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.
|
||||
Find the difference between the sum of the squares of the first N natural numbers and the square of the sum.
|
||||
'''
|
||||
n = int(input())
|
||||
suma = n*(n+1)/2
|
||||
suma **= 2
|
||||
sumb = n*(n+1)*(2*n+1)/6
|
||||
print suma-sumb
|
29
Project Euler/Problem 07/sol1.py
Normal file
29
Project Euler/Problem 07/sol1.py
Normal file
@ -0,0 +1,29 @@
|
||||
'''
|
||||
By listing the first six prime numbers:
|
||||
2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
|
||||
What is the Nth prime number?
|
||||
'''
|
||||
from math import sqrt
|
||||
def isprime(n):
|
||||
if (n==2):
|
||||
return True
|
||||
elif (n%2==0):
|
||||
return False
|
||||
else:
|
||||
sq = int(sqrt(n))+1
|
||||
for i in range(3,sq,2):
|
||||
if(n%i==0):
|
||||
return False
|
||||
return True
|
||||
n = int(input())
|
||||
i=0
|
||||
j=1
|
||||
while(i!=n and j<3):
|
||||
j+=1
|
||||
if (isprime(j)):
|
||||
i+=1
|
||||
while(i!=n):
|
||||
j+=2
|
||||
if(isprime(j)):
|
||||
i+=1
|
||||
print j
|
39
Project Euler/README.md
Normal file
39
Project Euler/README.md
Normal file
@ -0,0 +1,39 @@
|
||||
# ProjectEuler
|
||||
|
||||
Problems are taken from https://projecteuler.net/.
|
||||
|
||||
Project Euler is a series of challenging mathematical/computer programming problems that will require more than just mathematical
|
||||
insights to solve. Project Euler is ideal for mathematicians who are learning to code.
|
||||
|
||||
Here the efficiency of your code is also checked.
|
||||
I've tried to provide all the best possible solutions.
|
||||
|
||||
PROBLEMS:
|
||||
|
||||
1. If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3,5,6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below N.
|
||||
|
||||
2. Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2,
|
||||
the first 10 terms will be:
|
||||
1,2,3,5,8,13,21,34,55,89,..
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed n, find the sum of the even-valued terms.
|
||||
e.g. for n=10, we have {2,8}, sum is 10.
|
||||
|
||||
3. The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N?
|
||||
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
|
||||
|
||||
4. A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.
|
||||
Find the largest palindrome made from the product of two 3-digit numbers which is less than N.
|
||||
|
||||
5. 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
|
||||
What is the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to N?
|
||||
|
||||
6. The sum of the squares of the first ten natural numbers is,
|
||||
1^2 + 2^2 + ... + 10^2 = 385
|
||||
The square of the sum of the first ten natural numbers is,
|
||||
(1 + 2 + ... + 10)^2 = 552 = 3025
|
||||
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.
|
||||
Find the difference between the sum of the squares of the first N natural numbers and the square of the sum.
|
||||
|
||||
7. By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
|
||||
What is the Nth prime number?
|
1
data_structures/Arrays
Normal file
1
data_structures/Arrays
Normal file
@ -0,0 +1 @@
|
||||
Arrays implimentation using python programming.
|
28
data_structures/Binary Tree/FenwickTree.py
Normal file
28
data_structures/Binary Tree/FenwickTree.py
Normal file
@ -0,0 +1,28 @@
|
||||
class FenwickTree:
|
||||
|
||||
def __init__(self, SIZE): # create fenwick tree with size SIZE
|
||||
self.Size = SIZE
|
||||
self.ft = [0 for i in range (0,SIZE)]
|
||||
|
||||
def update(self, i, val): # update data (adding) in index i in O(lg N)
|
||||
while (i < self.Size):
|
||||
self.ft[i] += val
|
||||
i += i & (-i)
|
||||
|
||||
def query(self, i): # query cumulative data from index 0 to i in O(lg N)
|
||||
ret = 0
|
||||
while (i > 0):
|
||||
ret += self.ft[i]
|
||||
i -= i & (-i)
|
||||
return ret
|
||||
|
||||
if __name__ == '__main__':
|
||||
f = FenwickTree(100)
|
||||
f.update(1,20)
|
||||
f.update(4,4)
|
||||
print (f.query(1))
|
||||
print (f.query(3))
|
||||
print (f.query(4))
|
||||
f.update(2,-5)
|
||||
print (f.query(1))
|
||||
print (f.query(3))
|
90
data_structures/Binary Tree/LazySegmentTree.py
Normal file
90
data_structures/Binary Tree/LazySegmentTree.py
Normal file
@ -0,0 +1,90 @@
|
||||
import math
|
||||
|
||||
class SegmentTree:
|
||||
|
||||
def __init__(self, N):
|
||||
self.N = N
|
||||
self.st = [0 for i in range(0,4*N)] # approximate the overall size of segment tree with array N
|
||||
self.lazy = [0 for i in range(0,4*N)] # create array to store lazy update
|
||||
self.flag = [0 for i in range(0,4*N)] # flag for lazy update
|
||||
|
||||
def left(self, idx):
|
||||
return idx*2
|
||||
|
||||
def right(self, idx):
|
||||
return idx*2 + 1
|
||||
|
||||
def build(self, idx, l, r, A):
|
||||
if l==r:
|
||||
self.st[idx] = A[l-1]
|
||||
else :
|
||||
mid = (l+r)//2
|
||||
self.build(self.left(idx),l,mid, A)
|
||||
self.build(self.right(idx),mid+1,r, A)
|
||||
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
|
||||
|
||||
# update with O(lg N) (Normal segment tree without lazy update will take O(Nlg N) for each update)
|
||||
def update(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b]
|
||||
if self.flag[idx] == True:
|
||||
self.st[idx] = self.lazy[idx]
|
||||
self.flag[idx] = False
|
||||
if l!=r:
|
||||
self.lazy[self.left(idx)] = self.lazy[idx]
|
||||
self.lazy[self.right(idx)] = self.lazy[idx]
|
||||
self.flag[self.left(idx)] = True
|
||||
self.flag[self.right(idx)] = True
|
||||
|
||||
if r < a or l > b:
|
||||
return True
|
||||
if l >= a and r <= b :
|
||||
self.st[idx] = val
|
||||
if l!=r:
|
||||
self.lazy[self.left(idx)] = val
|
||||
self.lazy[self.right(idx)] = val
|
||||
self.flag[self.left(idx)] = True
|
||||
self.flag[self.right(idx)] = True
|
||||
return True
|
||||
mid = (l+r)//2
|
||||
self.update(self.left(idx),l,mid,a,b,val)
|
||||
self.update(self.right(idx),mid+1,r,a,b,val)
|
||||
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
|
||||
return True
|
||||
|
||||
# query with O(lg N)
|
||||
def query(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b]
|
||||
if self.flag[idx] == True:
|
||||
self.st[idx] = self.lazy[idx]
|
||||
self.flag[idx] = False
|
||||
if l != r:
|
||||
self.lazy[self.left(idx)] = self.lazy[idx]
|
||||
self.lazy[self.right(idx)] = self.lazy[idx]
|
||||
self.flag[self.left(idx)] = True
|
||||
self.flag[self.right(idx)] = True
|
||||
if r < a or l > b:
|
||||
return -math.inf
|
||||
if l >= a and r <= b:
|
||||
return self.st[idx]
|
||||
mid = (l+r)//2
|
||||
q1 = self.query(self.left(idx),l,mid,a,b)
|
||||
q2 = self.query(self.right(idx),mid+1,r,a,b)
|
||||
return max(q1,q2)
|
||||
|
||||
def showData(self):
|
||||
showList = []
|
||||
for i in range(1,N+1):
|
||||
showList += [self.query(1, 1, self.N, i, i)]
|
||||
print (showList)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8]
|
||||
N = 15
|
||||
segt = SegmentTree(N)
|
||||
segt.build(1,1,N,A)
|
||||
print (segt.query(1,1,N,4,6))
|
||||
print (segt.query(1,1,N,7,11))
|
||||
print (segt.query(1,1,N,7,12))
|
||||
segt.update(1,1,N,1,3,111)
|
||||
print (segt.query(1,1,N,1,15))
|
||||
segt.update(1,1,N,7,8,235)
|
||||
segt.showData()
|
64
data_structures/Binary Tree/SegmentTree.py
Normal file
64
data_structures/Binary Tree/SegmentTree.py
Normal file
@ -0,0 +1,64 @@
|
||||
import math
|
||||
|
||||
class SegmentTree:
|
||||
|
||||
def __init__(self, N):
|
||||
self.N = N
|
||||
self.st = [0 for i in range(0,4*N)] # approximate the overall size of segment tree with array N
|
||||
|
||||
def left(self, idx):
|
||||
return idx*2
|
||||
|
||||
def right(self, idx):
|
||||
return idx*2 + 1
|
||||
|
||||
def build(self, idx, l, r, A):
|
||||
if l==r:
|
||||
self.st[idx] = A[l-1]
|
||||
else :
|
||||
mid = (l+r)//2
|
||||
self.build(self.left(idx),l,mid, A)
|
||||
self.build(self.right(idx),mid+1,r, A)
|
||||
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
|
||||
|
||||
def update(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b]
|
||||
if r < a or l > b:
|
||||
return True
|
||||
if l == r :
|
||||
self.st[idx] = val
|
||||
return True
|
||||
mid = (l+r)//2
|
||||
self.update(self.left(idx),l,mid,a,b,val)
|
||||
self.update(self.right(idx),mid+1,r,a,b,val)
|
||||
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
|
||||
return True
|
||||
|
||||
def query(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b]
|
||||
if r < a or l > b:
|
||||
return -math.inf
|
||||
if l >= a and r <= b:
|
||||
return self.st[idx]
|
||||
mid = (l+r)//2
|
||||
q1 = self.query(self.left(idx),l,mid,a,b)
|
||||
q2 = self.query(self.right(idx),mid+1,r,a,b)
|
||||
return max(q1,q2)
|
||||
|
||||
def showData(self):
|
||||
showList = []
|
||||
for i in range(1,N+1):
|
||||
showList += [self.query(1, 1, self.N, i, i)]
|
||||
print (showList)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8]
|
||||
N = 15
|
||||
segt = SegmentTree(N)
|
||||
segt.build(1,1,N,A)
|
||||
print (segt.query(1,1,N,4,6))
|
||||
print (segt.query(1,1,N,7,11))
|
||||
print (segt.query(1,1,N,7,12))
|
||||
segt.update(1,1,N,1,3,111)
|
||||
print (segt.query(1,1,N,1,15))
|
||||
segt.update(1,1,N,7,8,235)
|
||||
segt.showData()
|
@ -1,103 +0,0 @@
|
||||
'''
|
||||
A binary search Tree
|
||||
'''
|
||||
|
||||
|
||||
class Node:
|
||||
|
||||
def __init__(self, label):
|
||||
self.label = label
|
||||
self.left = None
|
||||
self.right = None
|
||||
|
||||
def getLabel(self):
|
||||
return self.label
|
||||
|
||||
def setLabel(self, label):
|
||||
self.label = label
|
||||
|
||||
def getLeft(self):
|
||||
return self.left
|
||||
|
||||
def setLeft(self, left):
|
||||
self.left = left
|
||||
|
||||
def getRight(self):
|
||||
return self.right
|
||||
|
||||
def setRight(self, right):
|
||||
self.right = right
|
||||
|
||||
|
||||
class BinarySearchTree:
|
||||
|
||||
def __init__(self):
|
||||
self.root = None
|
||||
|
||||
def insert(self, label):
|
||||
|
||||
# Create a new Node
|
||||
|
||||
node = Node(label)
|
||||
|
||||
if self.empty():
|
||||
self.root = node
|
||||
else:
|
||||
dad_node = None
|
||||
curr_node = self.root
|
||||
|
||||
while True:
|
||||
if curr_node is not None:
|
||||
|
||||
dad_node = curr_node
|
||||
|
||||
if node.getLabel() < curr_node.getLabel():
|
||||
curr_node = curr_node.getLeft()
|
||||
else:
|
||||
curr_node = curr_node.getRight()
|
||||
else:
|
||||
if node.getLabel() < dad_node.getLabel():
|
||||
dad_node.setLeft(node)
|
||||
else:
|
||||
dad_node.setRight(node)
|
||||
break
|
||||
|
||||
def empty(self):
|
||||
if self.root is None:
|
||||
return True
|
||||
return False
|
||||
|
||||
def preShow(self, curr_node):
|
||||
if curr_node is not None:
|
||||
print(curr_node.getLabel(), end=" ")
|
||||
|
||||
self.preShow(curr_node.getLeft())
|
||||
self.preShow(curr_node.getRight())
|
||||
|
||||
def getRoot(self):
|
||||
return self.root
|
||||
|
||||
|
||||
'''
|
||||
Example
|
||||
8
|
||||
/ \
|
||||
3 10
|
||||
/ \ \
|
||||
1 6 14
|
||||
/ \ /
|
||||
4 7 13
|
||||
'''
|
||||
|
||||
t = BinarySearchTree()
|
||||
t.insert(8)
|
||||
t.insert(3)
|
||||
t.insert(1)
|
||||
t.insert(6)
|
||||
t.insert(4)
|
||||
t.insert(7)
|
||||
t.insert(10)
|
||||
t.insert(14)
|
||||
t.insert(13)
|
||||
|
||||
t.preShow(t.getRoot())
|
130
data_structures/Binary Tree/binary_search_tree.py
Normal file
130
data_structures/Binary Tree/binary_search_tree.py
Normal file
@ -0,0 +1,130 @@
|
||||
'''
|
||||
A binary search Tree
|
||||
'''
|
||||
|
||||
class Node:
|
||||
|
||||
def __init__(self, label):
|
||||
self.label = label
|
||||
self.left = None
|
||||
self.right = None
|
||||
|
||||
def getLabel(self):
|
||||
return self.label
|
||||
|
||||
def setLabel(self, label):
|
||||
self.label = label
|
||||
|
||||
def getLeft(self):
|
||||
return self.left
|
||||
|
||||
def setLeft(self, left):
|
||||
self.left = left
|
||||
|
||||
def getRight(self):
|
||||
return self.right
|
||||
|
||||
def setRight(self, right):
|
||||
self.right = right
|
||||
|
||||
|
||||
class BinarySearchTree:
|
||||
|
||||
def __init__(self):
|
||||
self.root = None
|
||||
|
||||
def insert(self, label):
|
||||
# Create a new Node
|
||||
new_node = Node(label)
|
||||
# If Tree is empty
|
||||
if self.empty():
|
||||
self.root = new_node
|
||||
else:
|
||||
#If Tree is not empty
|
||||
parent_node = None
|
||||
curr_node = self.root
|
||||
#While we don't get to a leaf
|
||||
while curr_node is not None:
|
||||
#We keep reference of the parent node
|
||||
parent_node = curr_node
|
||||
#If node label is less than current node
|
||||
if new_node.getLabel() < curr_node.getLabel():
|
||||
#We go left
|
||||
curr_node = curr_node.getLeft()
|
||||
else:
|
||||
#Else we go right
|
||||
curr_node = curr_node.getRight()
|
||||
#We insert the new node in a leaf
|
||||
if new_node.getLabel() < parent_node.getLabel():
|
||||
parent_node.setLeft(new_node)
|
||||
else:
|
||||
parent_node.setRight(new_node)
|
||||
|
||||
def getNode(self, label):
|
||||
curr_node = None
|
||||
#If the tree is not empty
|
||||
if(not self.empty()):
|
||||
#Get tree root
|
||||
curr_node = self.getRoot()
|
||||
#While we don't find the node we look for
|
||||
#I am using lazy evaluation here to avoid NoneType Attribute error
|
||||
while curr_node is not None and curr_node.getLabel() is not label:
|
||||
#If node label is less than current node
|
||||
if label < curr_node.getLabel():
|
||||
#We go left
|
||||
curr_node = curr_node.getLeft()
|
||||
else:
|
||||
#Else we go right
|
||||
curr_node = curr_node.getRight()
|
||||
return curr_node
|
||||
|
||||
def empty(self):
|
||||
if self.root is None:
|
||||
return True
|
||||
return False
|
||||
|
||||
def preShow(self, curr_node):
|
||||
if curr_node is not None:
|
||||
print(curr_node.getLabel())
|
||||
self.preShow(curr_node.getLeft())
|
||||
self.preShow(curr_node.getRight())
|
||||
|
||||
def getRoot(self):
|
||||
return self.root
|
||||
|
||||
'''
|
||||
Example
|
||||
8
|
||||
/ \
|
||||
3 10
|
||||
/ \ \
|
||||
1 6 14
|
||||
/ \ /
|
||||
4 7 13
|
||||
'''
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
t = BinarySearchTree()
|
||||
t.insert(8)
|
||||
t.insert(3)
|
||||
t.insert(1)
|
||||
t.insert(6)
|
||||
t.insert(4)
|
||||
t.insert(7)
|
||||
t.insert(10)
|
||||
t.insert(14)
|
||||
t.insert(13)
|
||||
|
||||
t.preShow(t.getRoot())
|
||||
|
||||
if(t.getNode(6) is not None):
|
||||
print("The label 6 exists")
|
||||
else:
|
||||
print("The label 6 doesn't exist")
|
||||
|
||||
if(t.getNode(-1) is not None):
|
||||
print("The label -1 exists")
|
||||
else:
|
||||
print("The label -1 doesn't exist")
|
||||
|
@ -48,3 +48,19 @@ class Linked_List:
|
||||
|
||||
def isEmpty(Head):
|
||||
return Head is None #Return if Head is none
|
||||
|
||||
def reverse(Head):
|
||||
prev = None
|
||||
current = Head
|
||||
|
||||
while(current):
|
||||
# Store the current node's next node.
|
||||
next_node = current.next
|
||||
# Make the current node's next point backwards
|
||||
current.next = prev
|
||||
# Make the previous node be the current node
|
||||
prev = current
|
||||
# Make the current node the next node (to progress iteration)
|
||||
current = next_node
|
||||
# Return prev in order to put the head at the end
|
||||
Head = prev
|
||||
|
39
data_structures/Queue/DeQueue.py
Normal file
39
data_structures/Queue/DeQueue.py
Normal file
@ -0,0 +1,39 @@
|
||||
# Python code to demonstrate working of
|
||||
# extend(), extendleft(), rotate(), reverse()
|
||||
|
||||
# importing "collections" for deque operations
|
||||
import collections
|
||||
|
||||
# initializing deque
|
||||
de = collections.deque([1, 2, 3,])
|
||||
|
||||
# using extend() to add numbers to right end
|
||||
# adds 4,5,6 to right end
|
||||
de.extend([4,5,6])
|
||||
|
||||
# printing modified deque
|
||||
print ("The deque after extending deque at end is : ")
|
||||
print (de)
|
||||
|
||||
# using extendleft() to add numbers to left end
|
||||
# adds 7,8,9 to right end
|
||||
de.extendleft([7,8,9])
|
||||
|
||||
# printing modified deque
|
||||
print ("The deque after extending deque at beginning is : ")
|
||||
print (de)
|
||||
|
||||
# using rotate() to rotate the deque
|
||||
# rotates by 3 to left
|
||||
de.rotate(-3)
|
||||
|
||||
# printing modified deque
|
||||
print ("The deque after rotating deque is : ")
|
||||
print (de)
|
||||
|
||||
# using reverse() to reverse the deque
|
||||
de.reverse()
|
||||
|
||||
# printing modified deque
|
||||
print ("The deque after reversing deque is : ")
|
||||
print (de)
|
0
data_structures/UnionFind/__init__.py
Normal file
0
data_structures/UnionFind/__init__.py
Normal file
77
data_structures/UnionFind/tests_union_find.py
Normal file
77
data_structures/UnionFind/tests_union_find.py
Normal file
@ -0,0 +1,77 @@
|
||||
from union_find import UnionFind
|
||||
import unittest
|
||||
|
||||
|
||||
class TestUnionFind(unittest.TestCase):
|
||||
def test_init_with_valid_size(self):
|
||||
uf = UnionFind(5)
|
||||
self.assertEqual(uf.size, 5)
|
||||
|
||||
def test_init_with_invalid_size(self):
|
||||
with self.assertRaises(ValueError):
|
||||
uf = UnionFind(0)
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
uf = UnionFind(-5)
|
||||
|
||||
def test_union_with_valid_values(self):
|
||||
uf = UnionFind(10)
|
||||
|
||||
for i in range(11):
|
||||
for j in range(11):
|
||||
uf.union(i, j)
|
||||
|
||||
def test_union_with_invalid_values(self):
|
||||
uf = UnionFind(10)
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
uf.union(-1, 1)
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
uf.union(11, 1)
|
||||
|
||||
def test_same_set_with_valid_values(self):
|
||||
uf = UnionFind(10)
|
||||
|
||||
for i in range(11):
|
||||
for j in range(11):
|
||||
if i == j:
|
||||
self.assertTrue(uf.same_set(i, j))
|
||||
else:
|
||||
self.assertFalse(uf.same_set(i, j))
|
||||
|
||||
uf.union(1, 2)
|
||||
self.assertTrue(uf.same_set(1, 2))
|
||||
|
||||
uf.union(3, 4)
|
||||
self.assertTrue(uf.same_set(3, 4))
|
||||
|
||||
self.assertFalse(uf.same_set(1, 3))
|
||||
self.assertFalse(uf.same_set(1, 4))
|
||||
self.assertFalse(uf.same_set(2, 3))
|
||||
self.assertFalse(uf.same_set(2, 4))
|
||||
|
||||
uf.union(1, 3)
|
||||
self.assertTrue(uf.same_set(1, 3))
|
||||
self.assertTrue(uf.same_set(1, 4))
|
||||
self.assertTrue(uf.same_set(2, 3))
|
||||
self.assertTrue(uf.same_set(2, 4))
|
||||
|
||||
uf.union(4, 10)
|
||||
self.assertTrue(uf.same_set(1, 10))
|
||||
self.assertTrue(uf.same_set(2, 10))
|
||||
self.assertTrue(uf.same_set(3, 10))
|
||||
self.assertTrue(uf.same_set(4, 10))
|
||||
|
||||
def test_same_set_with_invalid_values(self):
|
||||
uf = UnionFind(10)
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
uf.same_set(-1, 1)
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
uf.same_set(11, 0)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
87
data_structures/UnionFind/union_find.py
Normal file
87
data_structures/UnionFind/union_find.py
Normal file
@ -0,0 +1,87 @@
|
||||
class UnionFind():
|
||||
"""
|
||||
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
|
||||
|
||||
The union-find is a disjoint-set data structure
|
||||
|
||||
You can merge two sets and tell if one set belongs to
|
||||
another one.
|
||||
|
||||
It's used on the Kruskal Algorithm
|
||||
(https://en.wikipedia.org/wiki/Kruskal%27s_algorithm)
|
||||
|
||||
The elements are in range [0, size]
|
||||
"""
|
||||
def __init__(self, size):
|
||||
if size <= 0:
|
||||
raise ValueError("size should be greater than 0")
|
||||
|
||||
self.size = size
|
||||
|
||||
# The below plus 1 is because we are using elements
|
||||
# in range [0, size]. It makes more sense.
|
||||
|
||||
# Every set begins with only itself
|
||||
self.root = [i for i in range(size+1)]
|
||||
|
||||
# This is used for heuristic union by rank
|
||||
self.weight = [0 for i in range(size+1)]
|
||||
|
||||
def union(self, u, v):
|
||||
"""
|
||||
Union of the sets u and v.
|
||||
Complexity: log(n).
|
||||
Amortized complexity: < 5 (it's very fast).
|
||||
"""
|
||||
|
||||
self._validate_element_range(u, "u")
|
||||
self._validate_element_range(v, "v")
|
||||
|
||||
if u == v:
|
||||
return
|
||||
|
||||
# Using union by rank will guarantee the
|
||||
# log(n) complexity
|
||||
rootu = self._root(u)
|
||||
rootv = self._root(v)
|
||||
weight_u = self.weight[rootu]
|
||||
weight_v = self.weight[rootv]
|
||||
if weight_u >= weight_v:
|
||||
self.root[rootv] = rootu
|
||||
if weight_u == weight_v:
|
||||
self.weight[rootu] += 1
|
||||
else:
|
||||
self.root[rootu] = rootv
|
||||
|
||||
def same_set(self, u, v):
|
||||
"""
|
||||
Return true if the elements u and v belongs to
|
||||
the same set
|
||||
"""
|
||||
|
||||
self._validate_element_range(u, "u")
|
||||
self._validate_element_range(v, "v")
|
||||
|
||||
return self._root(u) == self._root(v)
|
||||
|
||||
def _root(self, u):
|
||||
"""
|
||||
Get the element set root.
|
||||
This uses the heuristic path compression
|
||||
See wikipedia article for more details.
|
||||
"""
|
||||
|
||||
if u != self.root[u]:
|
||||
self.root[u] = self._root(self.root[u])
|
||||
|
||||
return self.root[u]
|
||||
|
||||
def _validate_element_range(self, u, element_name):
|
||||
"""
|
||||
Raises ValueError if element is not in range
|
||||
"""
|
||||
if u < 0 or u > self.size:
|
||||
msg = ("element {0} with value {1} "
|
||||
"should be in range [0~{2}]")\
|
||||
.format(element_name, u, self.size)
|
||||
raise ValueError(msg)
|
37
dynamic_programming/FloydWarshall.py
Normal file
37
dynamic_programming/FloydWarshall.py
Normal file
@ -0,0 +1,37 @@
|
||||
import math
|
||||
|
||||
class Graph:
|
||||
|
||||
def __init__(self, N = 0): # a graph with Node 0,1,...,N-1
|
||||
self.N = N
|
||||
self.W = [[math.inf for j in range(0,N)] for i in range(0,N)] # adjacency matrix for weight
|
||||
self.dp = [[math.inf for j in range(0,N)] for i in range(0,N)] # dp[i][j] stores minimum distance from i to j
|
||||
|
||||
def addEdge(self, u, v, w):
|
||||
self.dp[u][v] = w;
|
||||
|
||||
def floyd_warshall(self):
|
||||
for k in range(0,self.N):
|
||||
for i in range(0,self.N):
|
||||
for j in range(0,self.N):
|
||||
self.dp[i][j] = min(self.dp[i][j], self.dp[i][k] + self.dp[k][j])
|
||||
|
||||
def showMin(self, u, v):
|
||||
return self.dp[u][v]
|
||||
|
||||
if __name__ == '__main__':
|
||||
graph = Graph(5)
|
||||
graph.addEdge(0,2,9)
|
||||
graph.addEdge(0,4,10)
|
||||
graph.addEdge(1,3,5)
|
||||
graph.addEdge(2,3,7)
|
||||
graph.addEdge(3,0,10)
|
||||
graph.addEdge(3,1,2)
|
||||
graph.addEdge(3,2,1)
|
||||
graph.addEdge(3,4,6)
|
||||
graph.addEdge(4,1,3)
|
||||
graph.addEdge(4,2,4)
|
||||
graph.addEdge(4,3,9)
|
||||
graph.floyd_warshall()
|
||||
graph.showMin(1,4)
|
||||
graph.showMin(0,3)
|
@ -18,28 +18,20 @@ returns true if S is nested and false otherwise.
|
||||
def is_balanced(S):
|
||||
|
||||
stack = []
|
||||
open_brackets = set({'(', '[', '{'})
|
||||
closed_brackets = set({')', ']', '}'})
|
||||
open_to_closed = dict({'{':'}', '[':']', '(':')'})
|
||||
|
||||
for i in range(len(S)):
|
||||
|
||||
if S[i] == '(' or S[i] == '{' or S[i] == '[':
|
||||
if S[i] in open_brackets:
|
||||
stack.append(S[i])
|
||||
|
||||
else:
|
||||
|
||||
if len(stack) > 0:
|
||||
|
||||
pair = stack.pop() + S[i]
|
||||
|
||||
if pair != '[]' and pair != '()' and pair != '{}':
|
||||
elif S[i] in closed_brackets:
|
||||
if len(stack) == 0 or (len(stack) > 0 and open_to_closed[stack.pop()] != S[i]):
|
||||
return False
|
||||
|
||||
else:
|
||||
return False
|
||||
|
||||
if len(stack) == 0:
|
||||
return True
|
||||
|
||||
return False
|
||||
return len(stack) == 0
|
||||
|
||||
|
||||
def main():
|
||||
|
28
other/two-sum.py
Normal file
28
other/two-sum.py
Normal file
@ -0,0 +1,28 @@
|
||||
"""
|
||||
Given an array of integers, return indices of the two numbers such that they add up to a specific target.
|
||||
|
||||
You may assume that each input would have exactly one solution, and you may not use the same element twice.
|
||||
|
||||
Example:
|
||||
Given nums = [2, 7, 11, 15], target = 9,
|
||||
|
||||
Because nums[0] + nums[1] = 2 + 7 = 9,
|
||||
return [0, 1].
|
||||
"""
|
||||
|
||||
def twoSum(nums, target):
|
||||
"""
|
||||
:type nums: List[int]
|
||||
:type target: int
|
||||
:rtype: List[int]
|
||||
"""
|
||||
chk_map = {}
|
||||
for index, val in enumerate(nums):
|
||||
compl = target - val
|
||||
if compl in chk_map:
|
||||
indices = [chk_map[compl], index]
|
||||
print(indices)
|
||||
return [indices]
|
||||
else:
|
||||
chk_map[val] = index
|
||||
return False
|
Loading…
Reference in New Issue
Block a user