mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Add Project Euler 65 Solution (#3035)
* Add solution for Project Euler 65, * Add URL to problem 65 and don't pass in parameter to solution() * Remove solution() tests * Add tests for solution(), add fstring and positional arg for solution * Rename directory and problem number to 065 * Remove directory * Move up explanation to module code block * Move solution() below helper function, rename variables
This commit is contained in:
parent
46af42d47a
commit
20260d2b9c
@ -671,6 +671,8 @@
|
||||
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_062/sol1.py)
|
||||
* Problem 063
|
||||
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_063/sol1.py)
|
||||
* Problem 065
|
||||
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_065/sol1.py)
|
||||
* Problem 067
|
||||
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_067/sol1.py)
|
||||
* Problem 069
|
||||
|
0
project_euler/problem_065/__init__.py
Normal file
0
project_euler/problem_065/__init__.py
Normal file
99
project_euler/problem_065/sol1.py
Normal file
99
project_euler/problem_065/sol1.py
Normal file
@ -0,0 +1,99 @@
|
||||
"""
|
||||
Project Euler Problem 65: https://projecteuler.net/problem=65
|
||||
|
||||
The square root of 2 can be written as an infinite continued fraction.
|
||||
|
||||
sqrt(2) = 1 + 1 / (2 + 1 / (2 + 1 / (2 + 1 / (2 + ...))))
|
||||
|
||||
The infinite continued fraction can be written, sqrt(2) = [1;(2)], (2)
|
||||
indicates that 2 repeats ad infinitum. In a similar way, sqrt(23) =
|
||||
[4;(1,3,1,8)].
|
||||
|
||||
It turns out that the sequence of partial values of continued
|
||||
fractions for square roots provide the best rational approximations.
|
||||
Let us consider the convergents for sqrt(2).
|
||||
|
||||
1 + 1 / 2 = 3/2
|
||||
1 + 1 / (2 + 1 / 2) = 7/5
|
||||
1 + 1 / (2 + 1 / (2 + 1 / 2)) = 17/12
|
||||
1 + 1 / (2 + 1 / (2 + 1 / (2 + 1 / 2))) = 41/29
|
||||
|
||||
Hence the sequence of the first ten convergents for sqrt(2) are:
|
||||
1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, ...
|
||||
|
||||
What is most surprising is that the important mathematical constant,
|
||||
e = [2;1,2,1,1,4,1,1,6,1,...,1,2k,1,...].
|
||||
|
||||
The first ten terms in the sequence of convergents for e are:
|
||||
2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536, ...
|
||||
|
||||
The sum of digits in the numerator of the 10th convergent is
|
||||
1 + 4 + 5 + 7 = 17.
|
||||
|
||||
Find the sum of the digits in the numerator of the 100th convergent
|
||||
of the continued fraction for e.
|
||||
|
||||
-----
|
||||
|
||||
The solution mostly comes down to finding an equation that will generate
|
||||
the numerator of the continued fraction. For the i-th numerator, the
|
||||
pattern is:
|
||||
|
||||
n_i = m_i * n_(i-1) + n_(i-2)
|
||||
|
||||
for m_i = the i-th index of the continued fraction representation of e,
|
||||
n_0 = 1, and n_1 = 2 as the first 2 numbers of the representation.
|
||||
|
||||
For example:
|
||||
n_9 = 6 * 193 + 106 = 1264
|
||||
1 + 2 + 6 + 4 = 13
|
||||
|
||||
n_10 = 1 * 193 + 1264 = 1457
|
||||
1 + 4 + 5 + 7 = 17
|
||||
"""
|
||||
|
||||
|
||||
def sum_digits(num: int) -> int:
|
||||
"""
|
||||
Returns the sum of every digit in num.
|
||||
|
||||
>>> sum_digits(1)
|
||||
1
|
||||
>>> sum_digits(12345)
|
||||
15
|
||||
>>> sum_digits(999001)
|
||||
28
|
||||
"""
|
||||
digit_sum = 0
|
||||
while num > 0:
|
||||
digit_sum += num % 10
|
||||
num //= 10
|
||||
return digit_sum
|
||||
|
||||
|
||||
def solution(max: int = 100) -> int:
|
||||
"""
|
||||
Returns the sum of the digits in the numerator of the max-th convergent of
|
||||
the continued fraction for e.
|
||||
|
||||
>>> solution(9)
|
||||
13
|
||||
>>> solution(10)
|
||||
17
|
||||
>>> solution(50)
|
||||
91
|
||||
"""
|
||||
pre_numerator = 1
|
||||
cur_numerator = 2
|
||||
|
||||
for i in range(2, max + 1):
|
||||
temp = pre_numerator
|
||||
e_cont = 2 * i // 3 if i % 3 == 0 else 1
|
||||
pre_numerator = cur_numerator
|
||||
cur_numerator = e_cont * pre_numerator + temp
|
||||
|
||||
return sum_digits(cur_numerator)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{solution() = }")
|
Loading…
Reference in New Issue
Block a user