mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
The black formatter is no longer beta (#5960)
* The black formatter is no longer beta * pre-commit autoupdate * pre-commit autoupdate * Remove project_euler/problem_145 which is killing our CI tests * updating DIRECTORY.md Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
c15a4d5af6
commit
24d3cf8244
@ -1,6 +1,6 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v3.4.0
|
||||
rev: v4.1.0
|
||||
hooks:
|
||||
- id: check-executables-have-shebangs
|
||||
- id: check-yaml
|
||||
@ -14,26 +14,26 @@ repos:
|
||||
- id: requirements-txt-fixer
|
||||
|
||||
- repo: https://github.com/psf/black
|
||||
rev: 21.4b0
|
||||
rev: 22.1.0
|
||||
hooks:
|
||||
- id: black
|
||||
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 5.8.0
|
||||
rev: 5.10.1
|
||||
hooks:
|
||||
- id: isort
|
||||
args:
|
||||
- --profile=black
|
||||
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v2.29.0
|
||||
rev: v2.31.0
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
args:
|
||||
- --py39-plus
|
||||
|
||||
- repo: https://gitlab.com/pycqa/flake8
|
||||
rev: 3.9.1
|
||||
rev: 3.9.2
|
||||
hooks:
|
||||
- id: flake8
|
||||
args:
|
||||
@ -42,7 +42,7 @@ repos:
|
||||
- --max-line-length=88
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: v0.910
|
||||
rev: v0.931
|
||||
hooks:
|
||||
- id: mypy
|
||||
args:
|
||||
@ -51,11 +51,11 @@ repos:
|
||||
- --non-interactive
|
||||
|
||||
- repo: https://github.com/codespell-project/codespell
|
||||
rev: v2.0.0
|
||||
rev: v2.1.0
|
||||
hooks:
|
||||
- id: codespell
|
||||
args:
|
||||
- --ignore-words-list=ans,crate,fo,followings,hist,iff,mater,secant,som,tim
|
||||
- --ignore-words-list=ans,crate,fo,followings,hist,iff,mater,secant,som,sur,tim
|
||||
- --skip="./.*,./strings/dictionary.txt,./strings/words.txt,./project_euler/problem_022/p022_names.txt"
|
||||
exclude: |
|
||||
(?x)^(
|
||||
|
@ -856,8 +856,6 @@
|
||||
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_135/sol1.py)
|
||||
* Problem 144
|
||||
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_144/sol1.py)
|
||||
* Problem 145
|
||||
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_145/sol1.py)
|
||||
* Problem 173
|
||||
* [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_173/sol1.py)
|
||||
* Problem 174
|
||||
|
@ -32,7 +32,7 @@ def bisection(function: Callable[[float], float], a: float, b: float) -> float:
|
||||
raise ValueError("could not find root in given interval.")
|
||||
else:
|
||||
mid: float = start + (end - start) / 2.0
|
||||
while abs(start - mid) > 10 ** -7: # until precisely equals to 10^-7
|
||||
while abs(start - mid) > 10**-7: # until precisely equals to 10^-7
|
||||
if function(mid) == 0:
|
||||
return mid
|
||||
elif function(mid) * function(start) < 0:
|
||||
@ -44,7 +44,7 @@ def bisection(function: Callable[[float], float], a: float, b: float) -> float:
|
||||
|
||||
|
||||
def f(x: float) -> float:
|
||||
return x ** 3 - 2 * x - 5
|
||||
return x**3 - 2 * x - 5
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -23,7 +23,7 @@ def polar_force(
|
||||
|
||||
|
||||
def in_static_equilibrium(
|
||||
forces: ndarray, location: ndarray, eps: float = 10 ** -1
|
||||
forces: ndarray, location: ndarray, eps: float = 10**-1
|
||||
) -> bool:
|
||||
"""
|
||||
Check if a system is in equilibrium.
|
||||
|
@ -35,7 +35,7 @@ def intersection(function: Callable[[float], float], x0: float, x1: float) -> fl
|
||||
x_n2: float = x_n1 - (
|
||||
function(x_n1) / ((function(x_n1) - function(x_n)) / (x_n1 - x_n))
|
||||
)
|
||||
if abs(x_n2 - x_n1) < 10 ** -5:
|
||||
if abs(x_n2 - x_n1) < 10**-5:
|
||||
return x_n2
|
||||
x_n = x_n1
|
||||
x_n1 = x_n2
|
||||
|
@ -37,17 +37,17 @@ def newton(
|
||||
next_guess = prev_guess - function(prev_guess) / derivative(prev_guess)
|
||||
except ZeroDivisionError:
|
||||
raise ZeroDivisionError("Could not find root") from None
|
||||
if abs(prev_guess - next_guess) < 10 ** -5:
|
||||
if abs(prev_guess - next_guess) < 10**-5:
|
||||
return next_guess
|
||||
prev_guess = next_guess
|
||||
|
||||
|
||||
def f(x: float) -> float:
|
||||
return (x ** 3) - (2 * x) - 5
|
||||
return (x**3) - (2 * x) - 5
|
||||
|
||||
|
||||
def f1(x: float) -> float:
|
||||
return 3 * (x ** 2) - 2
|
||||
return 3 * (x**2) - 2
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -11,7 +11,7 @@ from sympy import diff
|
||||
|
||||
|
||||
def newton_raphson(
|
||||
func: str, a: float | Decimal, precision: float = 10 ** -10
|
||||
func: str, a: float | Decimal, precision: float = 10**-10
|
||||
) -> float:
|
||||
"""Finds root from the point 'a' onwards by Newton-Raphson method
|
||||
>>> newton_raphson("sin(x)", 2)
|
||||
|
@ -73,7 +73,7 @@ def miller_rabin(n: int, allow_probable: bool = False) -> bool:
|
||||
for prime in plist:
|
||||
pr = False
|
||||
for r in range(s):
|
||||
m = pow(prime, d * 2 ** r, n)
|
||||
m = pow(prime, d * 2**r, n)
|
||||
# see article for analysis explanation for m
|
||||
if (r == 0 and m == 1) or ((m + 1) % n == 0):
|
||||
pr = True
|
||||
|
@ -21,7 +21,7 @@ def rabinMiller(num: int) -> bool:
|
||||
return False
|
||||
else:
|
||||
i = i + 1
|
||||
v = (v ** 2) % num
|
||||
v = (v**2) % num
|
||||
return True
|
||||
|
||||
|
||||
|
@ -29,8 +29,8 @@ def get_text_from_blocks(
|
||||
block_message: list[str] = []
|
||||
for i in range(block_size - 1, -1, -1):
|
||||
if len(message) + i < message_length:
|
||||
ascii_number = block_int // (BYTE_SIZE ** i)
|
||||
block_int = block_int % (BYTE_SIZE ** i)
|
||||
ascii_number = block_int // (BYTE_SIZE**i)
|
||||
block_int = block_int % (BYTE_SIZE**i)
|
||||
block_message.insert(0, chr(ascii_number))
|
||||
message.extend(block_message)
|
||||
return "".join(message)
|
||||
|
@ -40,7 +40,7 @@ def rsafactor(d: int, e: int, N: int) -> list[int]:
|
||||
while True:
|
||||
if t % 2 == 0:
|
||||
t = t // 2
|
||||
x = (g ** t) % N
|
||||
x = (g**t) % N
|
||||
y = math.gcd(x - 1, N)
|
||||
if x > 1 and y > 1:
|
||||
p = y
|
||||
|
@ -39,8 +39,8 @@ class Harris_Corner:
|
||||
color_img = img.copy()
|
||||
color_img = cv2.cvtColor(color_img, cv2.COLOR_GRAY2RGB)
|
||||
dy, dx = np.gradient(img)
|
||||
ixx = dx ** 2
|
||||
iyy = dy ** 2
|
||||
ixx = dx**2
|
||||
iyy = dy**2
|
||||
ixy = dx * dy
|
||||
k = 0.04
|
||||
offset = self.window_size // 2
|
||||
@ -56,9 +56,9 @@ class Harris_Corner:
|
||||
y - offset : y + offset + 1, x - offset : x + offset + 1
|
||||
].sum()
|
||||
|
||||
det = (wxx * wyy) - (wxy ** 2)
|
||||
det = (wxx * wyy) - (wxy**2)
|
||||
trace = wxx + wyy
|
||||
r = det - k * (trace ** 2)
|
||||
r = det - k * (trace**2)
|
||||
# Can change the value
|
||||
if r > 0.5:
|
||||
corner_list.append([x, y, r])
|
||||
|
@ -49,7 +49,7 @@ def gabor_filter_kernel(
|
||||
|
||||
# fill kernel
|
||||
gabor[y, x] = np.exp(
|
||||
-(_x ** 2 + gamma ** 2 * _y ** 2) / (2 * sigma ** 2)
|
||||
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2)
|
||||
) * np.cos(2 * np.pi * _x / lambd + psi)
|
||||
|
||||
return gabor
|
||||
|
@ -203,7 +203,7 @@ class IndexCalculation:
|
||||
https://www.indexdatabase.de/db/i-single.php?id=391
|
||||
:return: index
|
||||
"""
|
||||
return self.nir * (self.red / (self.green ** 2))
|
||||
return self.nir * (self.red / (self.green**2))
|
||||
|
||||
def GLI(self):
|
||||
"""
|
||||
@ -295,7 +295,7 @@ class IndexCalculation:
|
||||
"""
|
||||
return a * (
|
||||
(self.nir - a * self.red - b)
|
||||
/ (a * self.nir + self.red - a * b + X * (1 + a ** 2))
|
||||
/ (a * self.nir + self.red - a * b + X * (1 + a**2))
|
||||
)
|
||||
|
||||
def BWDRVI(self):
|
||||
@ -363,7 +363,7 @@ class IndexCalculation:
|
||||
https://www.indexdatabase.de/db/i-single.php?id=25
|
||||
:return: index
|
||||
"""
|
||||
n = (2 * (self.nir ** 2 - self.red ** 2) + 1.5 * self.nir + 0.5 * self.red) / (
|
||||
n = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
|
||||
self.nir + self.red + 0.5
|
||||
)
|
||||
return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red)
|
||||
|
@ -53,12 +53,12 @@ def carrier_concentration(
|
||||
elif electron_conc == 0:
|
||||
return (
|
||||
"electron_conc",
|
||||
intrinsic_conc ** 2 / hole_conc,
|
||||
intrinsic_conc**2 / hole_conc,
|
||||
)
|
||||
elif hole_conc == 0:
|
||||
return (
|
||||
"hole_conc",
|
||||
intrinsic_conc ** 2 / electron_conc,
|
||||
intrinsic_conc**2 / electron_conc,
|
||||
)
|
||||
elif intrinsic_conc == 0:
|
||||
return (
|
||||
|
@ -66,13 +66,13 @@ def couloumbs_law(
|
||||
if distance < 0:
|
||||
raise ValueError("Distance cannot be negative")
|
||||
if force == 0:
|
||||
force = COULOMBS_CONSTANT * charge_product / (distance ** 2)
|
||||
force = COULOMBS_CONSTANT * charge_product / (distance**2)
|
||||
return {"force": force}
|
||||
elif charge1 == 0:
|
||||
charge1 = abs(force) * (distance ** 2) / (COULOMBS_CONSTANT * charge2)
|
||||
charge1 = abs(force) * (distance**2) / (COULOMBS_CONSTANT * charge2)
|
||||
return {"charge1": charge1}
|
||||
elif charge2 == 0:
|
||||
charge2 = abs(force) * (distance ** 2) / (COULOMBS_CONSTANT * charge1)
|
||||
charge2 = abs(force) * (distance**2) / (COULOMBS_CONSTANT * charge1)
|
||||
return {"charge2": charge2}
|
||||
elif distance == 0:
|
||||
distance = (COULOMBS_CONSTANT * charge_product / abs(force)) ** 0.5
|
||||
|
@ -40,7 +40,7 @@ class BezierCurve:
|
||||
for i in range(len(self.list_of_points)):
|
||||
# basis function for each i
|
||||
output_values.append(
|
||||
comb(self.degree, i) * ((1 - t) ** (self.degree - i)) * (t ** i)
|
||||
comb(self.degree, i) * ((1 - t) ** (self.degree - i)) * (t**i)
|
||||
)
|
||||
# the basis must sum up to 1 for it to produce a valid Bezier curve.
|
||||
assert round(sum(output_values), 5) == 1
|
||||
|
@ -68,7 +68,7 @@ class Node:
|
||||
if HEURISTIC == 1:
|
||||
return abs(dx) + abs(dy)
|
||||
else:
|
||||
return sqrt(dy ** 2 + dx ** 2)
|
||||
return sqrt(dy**2 + dx**2)
|
||||
|
||||
def __lt__(self, other: Node) -> bool:
|
||||
return self.f_cost < other.f_cost
|
||||
|
@ -63,8 +63,8 @@ def pull():
|
||||
params_space[key] = (machine_time * 0.01 + r * 1.01) % 1 + 3
|
||||
|
||||
# Choosing Chaotic Data
|
||||
X = int(buffer_space[(key + 2) % m] * (10 ** 10))
|
||||
Y = int(buffer_space[(key - 2) % m] * (10 ** 10))
|
||||
X = int(buffer_space[(key + 2) % m] * (10**10))
|
||||
Y = int(buffer_space[(key - 2) % m] * (10**10))
|
||||
|
||||
# Machine Time
|
||||
machine_time += 1
|
||||
|
@ -78,7 +78,7 @@ def emitterConverter(sizePar, data):
|
||||
>>> emitterConverter(4, "101010111111")
|
||||
['1', '1', '1', '1', '0', '1', '0', '0', '1', '0', '1', '1', '1', '1', '1', '1']
|
||||
"""
|
||||
if sizePar + len(data) <= 2 ** sizePar - (len(data) - 1):
|
||||
if sizePar + len(data) <= 2**sizePar - (len(data) - 1):
|
||||
print("ERROR - size of parity don't match with size of data")
|
||||
exit(0)
|
||||
|
||||
|
@ -94,7 +94,7 @@ def not32(i):
|
||||
|
||||
|
||||
def sum32(a, b):
|
||||
return (a + b) % 2 ** 32
|
||||
return (a + b) % 2**32
|
||||
|
||||
|
||||
def leftrot32(i, s):
|
||||
@ -114,7 +114,7 @@ def md5me(testString):
|
||||
bs += format(ord(i), "08b")
|
||||
bs = pad(bs)
|
||||
|
||||
tvals = [int(2 ** 32 * abs(math.sin(i + 1))) for i in range(64)]
|
||||
tvals = [int(2**32 * abs(math.sin(i + 1))) for i in range(64)]
|
||||
|
||||
a0 = 0x67452301
|
||||
b0 = 0xEFCDAB89
|
||||
@ -211,7 +211,7 @@ def md5me(testString):
|
||||
dtemp = D
|
||||
D = C
|
||||
C = B
|
||||
B = sum32(B, leftrot32((A + f + tvals[i] + m[g]) % 2 ** 32, s[i]))
|
||||
B = sum32(B, leftrot32((A + f + tvals[i] + m[g]) % 2**32, s[i]))
|
||||
A = dtemp
|
||||
a0 = sum32(a0, A)
|
||||
b0 = sum32(b0, B)
|
||||
|
@ -172,7 +172,7 @@ class Vector:
|
||||
"""
|
||||
if len(self.__components) == 0:
|
||||
raise Exception("Vector is empty")
|
||||
squares = [c ** 2 for c in self.__components]
|
||||
squares = [c**2 for c in self.__components]
|
||||
return math.sqrt(sum(squares))
|
||||
|
||||
def angle(self, other: Vector, deg: bool = False) -> float:
|
||||
|
@ -112,7 +112,7 @@ def compute_heterogeneity(data, k, centroids, cluster_assignment):
|
||||
distances = pairwise_distances(
|
||||
member_data_points, [centroids[i]], metric="euclidean"
|
||||
)
|
||||
squared_distances = distances ** 2
|
||||
squared_distances = distances**2
|
||||
heterogeneity += np.sum(squared_distances)
|
||||
|
||||
return heterogeneity
|
||||
|
@ -25,7 +25,7 @@ def weighted_matrix(point: np.mat, training_data_x: np.mat, bandwidth: float) ->
|
||||
# calculating weights for all training examples [x(i)'s]
|
||||
for j in range(m):
|
||||
diff = point - training_data_x[j]
|
||||
weights[j, j] = np.exp(diff * diff.T / (-2.0 * bandwidth ** 2))
|
||||
weights[j, j] = np.exp(diff * diff.T / (-2.0 * bandwidth**2))
|
||||
return weights
|
||||
|
||||
|
||||
|
@ -345,15 +345,15 @@ class SmoSVM:
|
||||
ol = (
|
||||
l1 * f1
|
||||
+ L * f2
|
||||
+ 1 / 2 * l1 ** 2 * K(i1, i1)
|
||||
+ 1 / 2 * L ** 2 * K(i2, i2)
|
||||
+ 1 / 2 * l1**2 * K(i1, i1)
|
||||
+ 1 / 2 * L**2 * K(i2, i2)
|
||||
+ s * L * l1 * K(i1, i2)
|
||||
)
|
||||
oh = (
|
||||
h1 * f1
|
||||
+ H * f2
|
||||
+ 1 / 2 * h1 ** 2 * K(i1, i1)
|
||||
+ 1 / 2 * H ** 2 * K(i2, i2)
|
||||
+ 1 / 2 * h1**2 * K(i1, i1)
|
||||
+ 1 / 2 * H**2 * K(i2, i2)
|
||||
+ s * H * h1 * K(i1, i2)
|
||||
)
|
||||
"""
|
||||
|
@ -19,7 +19,7 @@ def surface_area_cube(side_length: float) -> float:
|
||||
"""
|
||||
if side_length < 0:
|
||||
raise ValueError("surface_area_cube() only accepts non-negative values")
|
||||
return 6 * side_length ** 2
|
||||
return 6 * side_length**2
|
||||
|
||||
|
||||
def surface_area_sphere(radius: float) -> float:
|
||||
@ -39,7 +39,7 @@ def surface_area_sphere(radius: float) -> float:
|
||||
"""
|
||||
if radius < 0:
|
||||
raise ValueError("surface_area_sphere() only accepts non-negative values")
|
||||
return 4 * pi * radius ** 2
|
||||
return 4 * pi * radius**2
|
||||
|
||||
|
||||
def surface_area_hemisphere(radius: float) -> float:
|
||||
@ -62,7 +62,7 @@ def surface_area_hemisphere(radius: float) -> float:
|
||||
"""
|
||||
if radius < 0:
|
||||
raise ValueError("surface_area_hemisphere() only accepts non-negative values")
|
||||
return 3 * pi * radius ** 2
|
||||
return 3 * pi * radius**2
|
||||
|
||||
|
||||
def surface_area_cone(radius: float, height: float) -> float:
|
||||
@ -90,7 +90,7 @@ def surface_area_cone(radius: float, height: float) -> float:
|
||||
"""
|
||||
if radius < 0 or height < 0:
|
||||
raise ValueError("surface_area_cone() only accepts non-negative values")
|
||||
return pi * radius * (radius + (height ** 2 + radius ** 2) ** 0.5)
|
||||
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
|
||||
|
||||
|
||||
def surface_area_cylinder(radius: float, height: float) -> float:
|
||||
@ -158,7 +158,7 @@ def area_square(side_length: float) -> float:
|
||||
"""
|
||||
if side_length < 0:
|
||||
raise ValueError("area_square() only accepts non-negative values")
|
||||
return side_length ** 2
|
||||
return side_length**2
|
||||
|
||||
|
||||
def area_triangle(base: float, height: float) -> float:
|
||||
@ -307,7 +307,7 @@ def area_circle(radius: float) -> float:
|
||||
"""
|
||||
if radius < 0:
|
||||
raise ValueError("area_circle() only accepts non-negative values")
|
||||
return pi * radius ** 2
|
||||
return pi * radius**2
|
||||
|
||||
|
||||
def area_ellipse(radius_x: float, radius_y: float) -> float:
|
||||
|
@ -50,7 +50,7 @@ def trapezoidal_area(
|
||||
if __name__ == "__main__":
|
||||
|
||||
def f(x):
|
||||
return x ** 3 + x ** 2
|
||||
return x**3 + x**2
|
||||
|
||||
print("f(x) = x^3 + x^2")
|
||||
print("The area between the curve, x = -5, x = 5 and the x axis is:")
|
||||
|
@ -36,7 +36,7 @@ def armstrong_number(n: int) -> bool:
|
||||
temp = n
|
||||
while temp > 0:
|
||||
rem = temp % 10
|
||||
sum += rem ** number_of_digits
|
||||
sum += rem**number_of_digits
|
||||
temp //= 10
|
||||
return n == sum
|
||||
|
||||
@ -63,7 +63,7 @@ def pluperfect_number(n: int) -> bool:
|
||||
digit_total += 1
|
||||
|
||||
for (cnt, i) in zip(digit_histogram, range(len(digit_histogram))):
|
||||
sum += cnt * i ** digit_total
|
||||
sum += cnt * i**digit_total
|
||||
|
||||
return n == sum
|
||||
|
||||
|
@ -81,14 +81,14 @@ def sum_of_divisors(n: int) -> int:
|
||||
temp += 1
|
||||
n = int(n / 2)
|
||||
if temp > 1:
|
||||
s *= (2 ** temp - 1) / (2 - 1)
|
||||
s *= (2**temp - 1) / (2 - 1)
|
||||
for i in range(3, int(math.sqrt(n)) + 1, 2):
|
||||
temp = 1
|
||||
while n % i == 0:
|
||||
temp += 1
|
||||
n = int(n / i)
|
||||
if temp > 1:
|
||||
s *= (i ** temp - 1) / (i - 1)
|
||||
s *= (i**temp - 1) / (i - 1)
|
||||
return int(s)
|
||||
|
||||
|
||||
|
@ -24,7 +24,7 @@ def binomial_distribution(successes: int, trials: int, prob: float) -> float:
|
||||
raise ValueError("the function is defined for non-negative integers")
|
||||
if not 0 < prob < 1:
|
||||
raise ValueError("prob has to be in range of 1 - 0")
|
||||
probability = (prob ** successes) * ((1 - prob) ** (trials - successes))
|
||||
probability = (prob**successes) * ((1 - prob) ** (trials - successes))
|
||||
# Calculate the binomial coefficient: n! / k!(n-k)!
|
||||
coefficient = float(factorial(trials))
|
||||
coefficient /= factorial(successes) * factorial(trials - successes)
|
||||
|
@ -159,7 +159,7 @@ def fib_binet(n: int) -> list[int]:
|
||||
raise Exception("n is too large")
|
||||
sqrt_5 = sqrt(5)
|
||||
phi = (1 + sqrt_5) / 2
|
||||
return [round(phi ** i / sqrt_5) for i in range(n + 1)]
|
||||
return [round(phi**i / sqrt_5) for i in range(n + 1)]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -52,7 +52,7 @@ def gaussian(x, mu: float = 0.0, sigma: float = 1.0) -> int:
|
||||
>>> gaussian(2523, mu=234234, sigma=3425)
|
||||
0.0
|
||||
"""
|
||||
return 1 / sqrt(2 * pi * sigma ** 2) * exp(-((x - mu) ** 2) / (2 * sigma ** 2))
|
||||
return 1 / sqrt(2 * pi * sigma**2) * exp(-((x - mu) ** 2) / (2 * sigma**2))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -14,8 +14,8 @@ def karatsuba(a, b):
|
||||
m1 = max(len(str(a)), len(str(b)))
|
||||
m2 = m1 // 2
|
||||
|
||||
a1, a2 = divmod(a, 10 ** m2)
|
||||
b1, b2 = divmod(b, 10 ** m2)
|
||||
a1, a2 = divmod(a, 10**m2)
|
||||
b1, b2 = divmod(b, 10**m2)
|
||||
|
||||
x = karatsuba(a2, b2)
|
||||
y = karatsuba((a1 + a2), (b1 + b2))
|
||||
|
@ -20,7 +20,7 @@ def pi_estimator(iterations: int):
|
||||
"""
|
||||
# A local function to see if a dot lands in the circle.
|
||||
def is_in_circle(x: float, y: float) -> bool:
|
||||
distance_from_centre = sqrt((x ** 2) + (y ** 2))
|
||||
distance_from_centre = sqrt((x**2) + (y**2))
|
||||
# Our circle has a radius of 1, so a distance
|
||||
# greater than 1 would land outside the circle.
|
||||
return distance_from_centre <= 1
|
||||
|
@ -56,7 +56,7 @@ def trapezoidal_area(
|
||||
if __name__ == "__main__":
|
||||
|
||||
def f(x):
|
||||
return x ** 3
|
||||
return x**3
|
||||
|
||||
print("f(x) = x^3")
|
||||
print("The area between the curve, x = -10, x = 10 and the x axis is:")
|
||||
|
@ -58,9 +58,9 @@ def perfect_square_binary_search(n: int) -> bool:
|
||||
right = n
|
||||
while left <= right:
|
||||
mid = (left + right) // 2
|
||||
if mid ** 2 == n:
|
||||
if mid**2 == n:
|
||||
return True
|
||||
elif mid ** 2 > n:
|
||||
elif mid**2 > n:
|
||||
right = mid - 1
|
||||
else:
|
||||
left = mid + 1
|
||||
|
@ -11,7 +11,7 @@ class Point:
|
||||
True, if the point lies in the unit circle
|
||||
False, otherwise
|
||||
"""
|
||||
return (self.x ** 2 + self.y ** 2) <= 1
|
||||
return (self.x**2 + self.y**2) <= 1
|
||||
|
||||
@classmethod
|
||||
def random_unit_square(cls):
|
||||
|
@ -12,7 +12,7 @@ def evaluate_poly(poly: Sequence[float], x: float) -> float:
|
||||
>>> evaluate_poly((0.0, 0.0, 5.0, 9.3, 7.0), 10.0)
|
||||
79800.0
|
||||
"""
|
||||
return sum(c * (x ** i) for i, c in enumerate(poly))
|
||||
return sum(c * (x**i) for i, c in enumerate(poly))
|
||||
|
||||
|
||||
def horner(poly: Sequence[float], x: float) -> float:
|
||||
|
@ -91,7 +91,7 @@ class FFT:
|
||||
next_ncol = self.C_max_length // 2
|
||||
while next_ncol > 0:
|
||||
new_dft = [[] for i in range(next_ncol)]
|
||||
root = self.root ** next_ncol
|
||||
root = self.root**next_ncol
|
||||
|
||||
# First half of next step
|
||||
current_root = 1
|
||||
|
@ -48,4 +48,4 @@ def sieve(n):
|
||||
return prime
|
||||
|
||||
|
||||
print(sieve(10 ** 6))
|
||||
print(sieve(10**6))
|
||||
|
@ -25,4 +25,4 @@ def sum_of_geometric_progression(
|
||||
return num_of_terms * first_term
|
||||
|
||||
# Formula for finding sum of n terms of a GeometricProgression
|
||||
return (first_term / (1 - common_ratio)) * (1 - common_ratio ** num_of_terms)
|
||||
return (first_term / (1 - common_ratio)) * (1 - common_ratio**num_of_terms)
|
||||
|
@ -159,16 +159,16 @@ class BodySystem:
|
||||
|
||||
# Calculation of the distance using Pythagoras's theorem
|
||||
# Extra factor due to the softening technique
|
||||
distance = (dif_x ** 2 + dif_y ** 2 + self.softening_factor) ** (
|
||||
distance = (dif_x**2 + dif_y**2 + self.softening_factor) ** (
|
||||
1 / 2
|
||||
)
|
||||
|
||||
# Newton's law of universal gravitation.
|
||||
force_x += (
|
||||
self.gravitation_constant * body2.mass * dif_x / distance ** 3
|
||||
self.gravitation_constant * body2.mass * dif_x / distance**3
|
||||
)
|
||||
force_y += (
|
||||
self.gravitation_constant * body2.mass * dif_y / distance ** 3
|
||||
self.gravitation_constant * body2.mass * dif_y / distance**3
|
||||
)
|
||||
|
||||
# Update the body's velocity once all the force components have been added
|
||||
|
@ -35,9 +35,9 @@ def solution(n: int = 100) -> int:
|
||||
sum_of_squares = 0
|
||||
sum_of_ints = 0
|
||||
for i in range(1, n + 1):
|
||||
sum_of_squares += i ** 2
|
||||
sum_of_squares += i**2
|
||||
sum_of_ints += i
|
||||
return sum_of_ints ** 2 - sum_of_squares
|
||||
return sum_of_ints**2 - sum_of_squares
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -25,7 +25,7 @@ def isprime(number: int) -> bool:
|
||||
True
|
||||
"""
|
||||
|
||||
for i in range(2, int(number ** 0.5) + 1):
|
||||
for i in range(2, int(number**0.5) + 1):
|
||||
if number % i == 0:
|
||||
return False
|
||||
return True
|
||||
|
@ -33,7 +33,7 @@ def solution() -> int:
|
||||
for b in range(a + 1, 400):
|
||||
for c in range(b + 1, 500):
|
||||
if (a + b + c) == 1000:
|
||||
if (a ** 2) + (b ** 2) == (c ** 2):
|
||||
if (a**2) + (b**2) == (c**2):
|
||||
return a * b * c
|
||||
|
||||
return -1
|
||||
@ -54,7 +54,7 @@ def solution_fast() -> int:
|
||||
for a in range(300):
|
||||
for b in range(400):
|
||||
c = 1000 - a - b
|
||||
if a < b < c and (a ** 2) + (b ** 2) == (c ** 2):
|
||||
if a < b < c and (a**2) + (b**2) == (c**2):
|
||||
return a * b * c
|
||||
|
||||
return -1
|
||||
|
@ -46,7 +46,7 @@ def solution(n: int = 2000000) -> int:
|
||||
primality_list[0] = 1
|
||||
primality_list[1] = 1
|
||||
|
||||
for i in range(2, int(n ** 0.5) + 1):
|
||||
for i in range(2, int(n**0.5) + 1):
|
||||
if primality_list[i] == 0:
|
||||
for j in range(i * i, n + 1, i):
|
||||
primality_list[j] = 1
|
||||
|
@ -18,7 +18,7 @@ def solution(power: int = 1000) -> int:
|
||||
>>> solution(15)
|
||||
26
|
||||
"""
|
||||
num = 2 ** power
|
||||
num = 2**power
|
||||
string_num = str(num)
|
||||
list_num = list(string_num)
|
||||
sum_of_num = 0
|
||||
@ -31,6 +31,6 @@ def solution(power: int = 1000) -> int:
|
||||
|
||||
if __name__ == "__main__":
|
||||
power = int(input("Enter the power of 2: ").strip())
|
||||
print("2 ^ ", power, " = ", 2 ** power)
|
||||
print("2 ^ ", power, " = ", 2**power)
|
||||
result = solution(power)
|
||||
print("Sum of the digits is: ", result)
|
||||
|
@ -19,7 +19,7 @@ def solution(power: int = 1000) -> int:
|
||||
>>> solution(15)
|
||||
26
|
||||
"""
|
||||
n = 2 ** power
|
||||
n = 2**power
|
||||
r = 0
|
||||
while n:
|
||||
r, n = r + n % 10, n // 10
|
||||
|
@ -30,7 +30,7 @@ def solution(limit=28123):
|
||||
"""
|
||||
sumDivs = [1] * (limit + 1)
|
||||
|
||||
for i in range(2, int(limit ** 0.5) + 1):
|
||||
for i in range(2, int(limit**0.5) + 1):
|
||||
sumDivs[i * i] += i
|
||||
for k in range(i + 1, limit // i + 1):
|
||||
sumDivs[k * i] += k + i
|
||||
|
@ -61,7 +61,7 @@ def solution(a_limit: int = 1000, b_limit: int = 1000) -> int:
|
||||
if is_prime(b):
|
||||
count = 0
|
||||
n = 0
|
||||
while is_prime((n ** 2) + (a * n) + b):
|
||||
while is_prime((n**2) + (a * n) + b):
|
||||
count += 1
|
||||
n += 1
|
||||
if count > longest[0]:
|
||||
|
@ -40,7 +40,7 @@ def solution(n: int = 1001) -> int:
|
||||
for i in range(1, int(ceil(n / 2.0))):
|
||||
odd = 2 * i + 1
|
||||
even = 2 * i
|
||||
total = total + 4 * odd ** 2 - 6 * even
|
||||
total = total + 4 * odd**2 - 6 * even
|
||||
|
||||
return total
|
||||
|
||||
|
@ -41,7 +41,7 @@ def solution(n: int = 100) -> int:
|
||||
|
||||
for a in range(2, N):
|
||||
for b in range(2, N):
|
||||
currentPow = a ** b # calculates the current power
|
||||
currentPow = a**b # calculates the current power
|
||||
collectPowers.add(currentPow) # adds the result to the set
|
||||
return len(collectPowers)
|
||||
|
||||
|
@ -17,7 +17,7 @@ def solution():
|
||||
"""
|
||||
total = 0
|
||||
for i in range(1, 1001):
|
||||
total += i ** i
|
||||
total += i**i
|
||||
return str(total)[-10:]
|
||||
|
||||
|
||||
|
@ -35,7 +35,7 @@ def prime_sieve(limit: int) -> list[int]:
|
||||
is_prime[1] = False
|
||||
is_prime[2] = True
|
||||
|
||||
for i in range(3, int(limit ** 0.5 + 1), 2):
|
||||
for i in range(3, int(limit**0.5 + 1), 2):
|
||||
index = i * 2
|
||||
while index < limit:
|
||||
is_prime[index] = False
|
||||
|
@ -37,7 +37,7 @@ def prime_sieve(n: int) -> list[int]:
|
||||
is_prime[1] = False
|
||||
is_prime[2] = True
|
||||
|
||||
for i in range(3, int(n ** 0.5 + 1), 2):
|
||||
for i in range(3, int(n**0.5 + 1), 2):
|
||||
index = i * 2
|
||||
while index < n:
|
||||
is_prime[index] = False
|
||||
|
@ -30,7 +30,7 @@ def solution(a: int = 100, b: int = 100) -> int:
|
||||
# RETURN the MAXIMUM from the list of SUMs of the list of INT converted from STR of
|
||||
# BASE raised to the POWER
|
||||
return max(
|
||||
sum(int(x) for x in str(base ** power))
|
||||
sum(int(x) for x in str(base**power))
|
||||
for base in range(a)
|
||||
for power in range(b)
|
||||
)
|
||||
|
@ -55,7 +55,7 @@ def get_digits(num: int) -> str:
|
||||
>>> get_digits(123)
|
||||
'0166788'
|
||||
"""
|
||||
return "".join(sorted(list(str(num ** 3))))
|
||||
return "".join(sorted(list(str(num**3))))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -26,7 +26,7 @@ def solution(max_base: int = 10, max_power: int = 22) -> int:
|
||||
bases = range(1, max_base)
|
||||
powers = range(1, max_power)
|
||||
return sum(
|
||||
1 for power in powers for base in bases if len(str(base ** power)) == power
|
||||
1 for power in powers for base in bases if len(str(base**power)) == power
|
||||
)
|
||||
|
||||
|
||||
|
@ -38,7 +38,7 @@ def continuous_fraction_period(n: int) -> int:
|
||||
period = 0
|
||||
while integer_part != 2 * ROOT:
|
||||
numerator = denominator * integer_part - numerator
|
||||
denominator = (n - numerator ** 2) / denominator
|
||||
denominator = (n - numerator**2) / denominator
|
||||
integer_part = int((ROOT + numerator) / denominator)
|
||||
period += 1
|
||||
return period
|
||||
|
@ -24,7 +24,7 @@ Find the value of n ≤ 1,000,000 for which n/φ(n) is a maximum.
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 10 ** 6) -> int:
|
||||
def solution(n: int = 10**6) -> int:
|
||||
"""
|
||||
Returns solution to problem.
|
||||
Algorithm:
|
||||
|
@ -23,7 +23,7 @@ primes = set(range(3, NUM_PRIMES, 2))
|
||||
primes.add(2)
|
||||
prime: int
|
||||
|
||||
for prime in range(3, ceil(NUM_PRIMES ** 0.5), 2):
|
||||
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
|
||||
if prime not in primes:
|
||||
continue
|
||||
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
|
||||
|
@ -91,7 +91,7 @@ def solution(limit: int = 1000000) -> int:
|
||||
while num_cuboids <= limit:
|
||||
max_cuboid_size += 1
|
||||
for sum_shortest_sides in range(2, 2 * max_cuboid_size + 1):
|
||||
if sqrt(sum_shortest_sides ** 2 + max_cuboid_size ** 2).is_integer():
|
||||
if sqrt(sum_shortest_sides**2 + max_cuboid_size**2).is_integer():
|
||||
num_cuboids += (
|
||||
min(max_cuboid_size, sum_shortest_sides // 2)
|
||||
- max(1, sum_shortest_sides - max_cuboid_size)
|
||||
|
@ -12,7 +12,7 @@ How many starting numbers below ten million will arrive at 89?
|
||||
"""
|
||||
|
||||
|
||||
DIGITS_SQUARED = [digit ** 2 for digit in range(10)]
|
||||
DIGITS_SQUARED = [digit**2 for digit in range(10)]
|
||||
|
||||
|
||||
def next_number(number: int) -> int:
|
||||
|
@ -34,7 +34,7 @@ def solution(n: int = 10) -> str:
|
||||
"""
|
||||
if not isinstance(n, int) or n < 0:
|
||||
raise ValueError("Invalid input")
|
||||
MODULUS = 10 ** n
|
||||
MODULUS = 10**n
|
||||
NUMBER = 28433 * (pow(2, 7830457, MODULUS)) + 1
|
||||
return str(NUMBER % MODULUS)
|
||||
|
||||
|
@ -175,15 +175,15 @@ def question_function(variable: int) -> int:
|
||||
return (
|
||||
1
|
||||
- variable
|
||||
+ variable ** 2
|
||||
- variable ** 3
|
||||
+ variable ** 4
|
||||
- variable ** 5
|
||||
+ variable ** 6
|
||||
- variable ** 7
|
||||
+ variable ** 8
|
||||
- variable ** 9
|
||||
+ variable ** 10
|
||||
+ variable**2
|
||||
- variable**3
|
||||
+ variable**4
|
||||
- variable**5
|
||||
+ variable**6
|
||||
- variable**7
|
||||
+ variable**8
|
||||
- variable**9
|
||||
+ variable**10
|
||||
)
|
||||
|
||||
|
||||
|
@ -35,7 +35,7 @@ def solution() -> int:
|
||||
Returns the sum of all numbers less than 1e8 that are both palindromic and
|
||||
can be written as the sum of consecutive squares.
|
||||
"""
|
||||
LIMIT = 10 ** 8
|
||||
LIMIT = 10**8
|
||||
answer = set()
|
||||
first_square = 1
|
||||
sum_squares = 5
|
||||
@ -45,9 +45,9 @@ def solution() -> int:
|
||||
if is_palindrome(sum_squares):
|
||||
answer.add(sum_squares)
|
||||
last_square += 1
|
||||
sum_squares += last_square ** 2
|
||||
sum_squares += last_square**2
|
||||
first_square += 1
|
||||
sum_squares = first_square ** 2 + (first_square + 1) ** 2
|
||||
sum_squares = first_square**2 + (first_square + 1) ** 2
|
||||
|
||||
return sum(answer)
|
||||
|
||||
|
@ -58,15 +58,15 @@ def next_point(
|
||||
# y^2 + 4x^2 = 100
|
||||
# y - b = m * (x - a)
|
||||
# ==> A x^2 + B x + C = 0
|
||||
quadratic_term = outgoing_gradient ** 2 + 4
|
||||
quadratic_term = outgoing_gradient**2 + 4
|
||||
linear_term = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
|
||||
constant_term = (point_y - outgoing_gradient * point_x) ** 2 - 100
|
||||
|
||||
x_minus = (
|
||||
-linear_term - sqrt(linear_term ** 2 - 4 * quadratic_term * constant_term)
|
||||
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term)
|
||||
) / (2 * quadratic_term)
|
||||
x_plus = (
|
||||
-linear_term + sqrt(linear_term ** 2 - 4 * quadratic_term * constant_term)
|
||||
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term)
|
||||
) / (2 * quadratic_term)
|
||||
|
||||
# two solutions, one of which is our input point
|
||||
|
@ -1,87 +0,0 @@
|
||||
"""
|
||||
Problem 145: https://projecteuler.net/problem=145
|
||||
|
||||
Name: How many reversible numbers are there below one-billion?
|
||||
|
||||
Some positive integers n have the property that the
|
||||
sum [ n + reverse(n) ] consists entirely of odd (decimal) digits.
|
||||
For instance, 36 + 63 = 99 and 409 + 904 = 1313.
|
||||
We will call such numbers reversible; so 36, 63, 409, and 904 are reversible.
|
||||
Leading zeroes are not allowed in either n or reverse(n).
|
||||
|
||||
There are 120 reversible numbers below one-thousand.
|
||||
|
||||
How many reversible numbers are there below one-billion (10^9)?
|
||||
|
||||
|
||||
Solution:
|
||||
|
||||
Here a brute force solution is used to find and count the reversible numbers.
|
||||
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def check_if_odd(sum: int = 36) -> int:
|
||||
"""
|
||||
Check if the last digit in the sum is even or odd. If even return 0.
|
||||
If odd then floor division by 10 is used to remove the last number.
|
||||
Process continues until sum becomes 0 because no more numbers.
|
||||
>>> check_if_odd(36)
|
||||
0
|
||||
>>> check_if_odd(33)
|
||||
1
|
||||
"""
|
||||
while sum > 0:
|
||||
if (sum % 10) % 2 == 0:
|
||||
return 0
|
||||
sum = sum // 10
|
||||
return 1
|
||||
|
||||
|
||||
def find_reverse_number(number: int = 36) -> int:
|
||||
"""
|
||||
Reverses the given number. Does not work with number that end in zero.
|
||||
>>> find_reverse_number(36)
|
||||
63
|
||||
>>> find_reverse_number(409)
|
||||
904
|
||||
"""
|
||||
reverse = 0
|
||||
|
||||
while number > 0:
|
||||
temp = number % 10
|
||||
reverse = reverse * 10 + temp
|
||||
number = number // 10
|
||||
|
||||
return reverse
|
||||
|
||||
|
||||
def solution(number: int = 1000000000) -> int:
|
||||
"""
|
||||
Loops over the range of numbers.
|
||||
Checks if they have ending zeros which disqualifies them from being reversible.
|
||||
If that condition is passed it generates the reversed number.
|
||||
Then sum up n and reverse(n).
|
||||
Then check if all the numbers in the sum are odd. If true add to the answer.
|
||||
>>> solution(1000000000)
|
||||
608720
|
||||
>>> solution(1000000)
|
||||
18720
|
||||
>>> solution(1000000)
|
||||
18720
|
||||
>>> solution(1000)
|
||||
120
|
||||
"""
|
||||
answer = 0
|
||||
for x in range(1, number):
|
||||
if x % 10 != 0:
|
||||
reversed_number = find_reverse_number(x)
|
||||
sum = x + reversed_number
|
||||
answer += check_if_odd(sum)
|
||||
|
||||
return answer
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{solution() = }")
|
@ -25,8 +25,8 @@ def solution(limit: int = 1000000) -> int:
|
||||
answer = 0
|
||||
|
||||
for outer_width in range(3, (limit // 4) + 2):
|
||||
if outer_width ** 2 > limit:
|
||||
hole_width_lower_bound = max(ceil(sqrt(outer_width ** 2 - limit)), 1)
|
||||
if outer_width**2 > limit:
|
||||
hole_width_lower_bound = max(ceil(sqrt(outer_width**2 - limit)), 1)
|
||||
else:
|
||||
hole_width_lower_bound = 1
|
||||
if (outer_width - hole_width_lower_bound) % 2:
|
||||
|
@ -61,7 +61,7 @@ def is_sq(number: int) -> bool:
|
||||
>>> is_sq(1000000)
|
||||
True
|
||||
"""
|
||||
sq: int = int(number ** 0.5)
|
||||
sq: int = int(number**0.5)
|
||||
return number == sq * sq
|
||||
|
||||
|
||||
|
@ -59,7 +59,7 @@ def solution(base: int = 1777, height: int = 1855, digits: int = 8) -> int:
|
||||
# exponentiation
|
||||
result = base
|
||||
for i in range(1, height):
|
||||
result = _modexpt(base, result, 10 ** digits)
|
||||
result = _modexpt(base, result, 10**digits)
|
||||
|
||||
return result
|
||||
|
||||
|
@ -82,10 +82,10 @@ def get_primes_squared(max_number: int) -> list[int]:
|
||||
if non_primes[num]:
|
||||
continue
|
||||
|
||||
for num_counter in range(num ** 2, max_prime + 1, num):
|
||||
for num_counter in range(num**2, max_prime + 1, num):
|
||||
non_primes[num_counter] = True
|
||||
|
||||
primes.append(num ** 2)
|
||||
primes.append(num**2)
|
||||
return primes
|
||||
|
||||
|
||||
|
@ -63,7 +63,7 @@ def solution() -> float:
|
||||
colin_totals_frequencies[min_colin_total:peter_total]
|
||||
)
|
||||
|
||||
total_games_number = (4 ** 9) * (6 ** 6)
|
||||
total_games_number = (4**9) * (6**6)
|
||||
peter_win_probability = peter_wins_count / total_games_number
|
||||
|
||||
rounded_peter_win_probability = round(peter_win_probability, ndigits=7)
|
||||
|
@ -81,7 +81,7 @@ def solution(max_proportion: float = 1 / 12345) -> int:
|
||||
|
||||
integer = 3
|
||||
while True:
|
||||
partition_candidate = (integer ** 2 - 1) / 4
|
||||
partition_candidate = (integer**2 - 1) / 4
|
||||
# if candidate is an integer, then there is a partition for k
|
||||
if partition_candidate == int(partition_candidate):
|
||||
partition_candidate = int(partition_candidate)
|
||||
|
@ -35,7 +35,7 @@ def prime_sieve(n: int) -> list:
|
||||
is_prime[1] = False
|
||||
is_prime[2] = True
|
||||
|
||||
for i in range(3, int(n ** 0.5 + 1), 2):
|
||||
for i in range(3, int(n**0.5 + 1), 2):
|
||||
index = i * 2
|
||||
while index < n:
|
||||
is_prime[index] = False
|
||||
@ -69,11 +69,11 @@ def solution(limit: int = 999_966_663_333) -> int:
|
||||
prime_index = 0
|
||||
last_prime = primes[prime_index]
|
||||
|
||||
while (last_prime ** 2) <= limit:
|
||||
while (last_prime**2) <= limit:
|
||||
next_prime = primes[prime_index + 1]
|
||||
|
||||
lower_bound = last_prime ** 2
|
||||
upper_bound = next_prime ** 2
|
||||
lower_bound = last_prime**2
|
||||
upper_bound = next_prime**2
|
||||
|
||||
# Get numbers divisible by lps(current)
|
||||
current = lower_bound + last_prime
|
||||
|
@ -48,8 +48,8 @@ def solution(exponent: int = 30) -> int:
|
||||
# To find how many total games were lost for a given exponent x,
|
||||
# we need to find the Fibonacci number F(x+2).
|
||||
fibonacci_index = exponent + 2
|
||||
phi = (1 + 5 ** 0.5) / 2
|
||||
fibonacci = (phi ** fibonacci_index - (phi - 1) ** fibonacci_index) / 5 ** 0.5
|
||||
phi = (1 + 5**0.5) / 2
|
||||
fibonacci = (phi**fibonacci_index - (phi - 1) ** fibonacci_index) / 5**0.5
|
||||
|
||||
return int(fibonacci)
|
||||
|
||||
|
@ -14,7 +14,7 @@ Find a(10^15)
|
||||
|
||||
|
||||
ks = [k for k in range(2, 20 + 1)]
|
||||
base = [10 ** k for k in range(ks[-1] + 1)]
|
||||
base = [10**k for k in range(ks[-1] + 1)]
|
||||
memo: dict[int, dict[int, list[list[int]]]] = {}
|
||||
|
||||
|
||||
@ -168,7 +168,7 @@ def add(digits, k, addend):
|
||||
digits.append(digit)
|
||||
|
||||
|
||||
def solution(n: int = 10 ** 15) -> int:
|
||||
def solution(n: int = 10**15) -> int:
|
||||
"""
|
||||
returns n-th term of sequence
|
||||
|
||||
@ -193,7 +193,7 @@ def solution(n: int = 10 ** 15) -> int:
|
||||
|
||||
a_n = 0
|
||||
for j in range(len(digits)):
|
||||
a_n += digits[j] * 10 ** j
|
||||
a_n += digits[j] * 10**j
|
||||
return a_n
|
||||
|
||||
|
||||
|
@ -39,7 +39,7 @@ def dj_oracle(case: str, num_qubits: int) -> q.QuantumCircuit:
|
||||
if case == "balanced":
|
||||
# First generate a random number that tells us which CNOTs to
|
||||
# wrap in X-gates:
|
||||
b = np.random.randint(1, 2 ** num_qubits)
|
||||
b = np.random.randint(1, 2**num_qubits)
|
||||
# Next, format 'b' as a binary string of length 'n', padded with zeros:
|
||||
b_str = format(b, f"0{num_qubits}b")
|
||||
# Next, we place the first X-gates. Each digit in our binary string
|
||||
|
@ -166,7 +166,7 @@ if __name__ == "__main__":
|
||||
doctest.testmod()
|
||||
|
||||
def test_f1(x, y):
|
||||
return (x ** 2) + (y ** 2)
|
||||
return (x**2) + (y**2)
|
||||
|
||||
# starting the problem with initial coordinates (3, 4)
|
||||
prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1)
|
||||
@ -187,7 +187,7 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
def test_f2(x, y):
|
||||
return (3 * x ** 2) - (6 * y)
|
||||
return (3 * x**2) - (6 * y)
|
||||
|
||||
prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1)
|
||||
local_min = hill_climbing(prob, find_max=True)
|
||||
|
@ -97,7 +97,7 @@ def simulated_annealing(
|
||||
if __name__ == "__main__":
|
||||
|
||||
def test_f1(x, y):
|
||||
return (x ** 2) + (y ** 2)
|
||||
return (x**2) + (y**2)
|
||||
|
||||
# starting the problem with initial coordinates (12, 47)
|
||||
prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1)
|
||||
@ -120,7 +120,7 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
def test_f2(x, y):
|
||||
return (3 * x ** 2) - (6 * y)
|
||||
return (3 * x**2) - (6 * y)
|
||||
|
||||
prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1)
|
||||
local_min = simulated_annealing(prob, find_max=False, visualization=True)
|
||||
|
Loading…
Reference in New Issue
Block a user