mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
feat: CNN classification added to computer vision (#4350)
* cnn classification file * black formatted * flake8 corrected * added cnn classification * Delete requirements.txt * Update cnn_classification.py * Create cnn_classification.py * using keras from tensorflow only * update tensorflow * Update cnn_classification.py * Delete computer_vision/cnn_classification directory
This commit is contained in:
parent
4f9ee4330a
commit
2899cdac20
98
computer_vision/cnn_classification.py
Normal file
98
computer_vision/cnn_classification.py
Normal file
@ -0,0 +1,98 @@
|
||||
"""
|
||||
Convolutional Neural Network
|
||||
|
||||
Objective : To train a CNN model detect if TB is present in Lung X-ray or not.
|
||||
|
||||
Resources CNN Theory :
|
||||
https://en.wikipedia.org/wiki/Convolutional_neural_network
|
||||
Resources Tensorflow : https://www.tensorflow.org/tutorials/images/cnn
|
||||
|
||||
Download dataset from :
|
||||
https://lhncbc.nlm.nih.gov/LHC-publications/pubs/TuberculosisChestXrayImageDataSets.html
|
||||
|
||||
1. Download the dataset folder and create two folder training set and test set
|
||||
in the parent dataste folder
|
||||
2. Move 30-40 image from both TB positive and TB Negative folder
|
||||
in the test set folder
|
||||
3. The labels of the iamges will be extracted from the folder name
|
||||
the image is present in.
|
||||
|
||||
"""
|
||||
|
||||
# Part 1 - Building the CNN
|
||||
|
||||
import numpy as np
|
||||
|
||||
# Importing the Keras libraries and packages
|
||||
import tensorflow as tf
|
||||
from tensorflow.keras import layers, models
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Initialising the CNN
|
||||
classifier = models.Sequential()
|
||||
|
||||
# Step 1 - Convolution
|
||||
classifier.add(
|
||||
layers.Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation="relu")
|
||||
)
|
||||
|
||||
# Step 2 - Pooling
|
||||
classifier.add(layers.MaxPooling2D(pool_size=(2, 2)))
|
||||
|
||||
# Adding a second convolutional layer
|
||||
classifier.add(layers.Conv2D(32, (3, 3), activation="relu"))
|
||||
classifier.add(layers.MaxPooling2D(pool_size=(2, 2)))
|
||||
|
||||
# Step 3 - Flattening
|
||||
classifier.add(layers.Flatten())
|
||||
|
||||
# Step 4 - Full connection
|
||||
classifier.add(layers.Dense(units=128, activation="relu"))
|
||||
classifier.add(layers.Dense(units=1, activation="sigmoid"))
|
||||
|
||||
# Compiling the CNN
|
||||
classifier.compile(
|
||||
optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]
|
||||
)
|
||||
|
||||
# Part 2 - Fitting the CNN to the images
|
||||
|
||||
# Load Trained model weights
|
||||
|
||||
# from keras.models import load_model
|
||||
# regressor=load_model('cnn.h5')
|
||||
|
||||
train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(
|
||||
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
|
||||
)
|
||||
|
||||
test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
|
||||
|
||||
training_set = train_datagen.flow_from_directory(
|
||||
"dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary"
|
||||
)
|
||||
|
||||
test_set = test_datagen.flow_from_directory(
|
||||
"dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary"
|
||||
)
|
||||
|
||||
classifier.fit_generator(
|
||||
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
|
||||
)
|
||||
|
||||
classifier.save("cnn.h5")
|
||||
|
||||
# Part 3 - Making new predictions
|
||||
|
||||
test_image = tf.keras.preprocessing.image.load_img(
|
||||
"dataset/single_prediction/image.png", target_size=(64, 64)
|
||||
)
|
||||
test_image = tf.keras.preprocessing.image.img_to_array(test_image)
|
||||
test_image = np.expand_dims(test_image, axis=0)
|
||||
result = classifier.predict(test_image)
|
||||
training_set.class_indices
|
||||
if result[0][0] == 0:
|
||||
prediction = "Normal"
|
||||
if result[0][0] == 1:
|
||||
prediction = "Abnormality detected"
|
Loading…
Reference in New Issue
Block a user