mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Revert "Upadated RSA Algorithm under Cryptography Section"
This commit is contained in:
parent
0115ee7842
commit
2c07216e6c
@ -1,113 +0,0 @@
|
||||
import random
|
||||
|
||||
|
||||
'''
|
||||
Euclid's algorithm for determining the greatest common divisor
|
||||
Use iteration to make it faster for larger integers
|
||||
'''
|
||||
def gcd(a, b):
|
||||
while b != 0:
|
||||
a, b = b, a % b
|
||||
return a
|
||||
|
||||
'''
|
||||
Euclid's extended algorithm for finding the multiplicative inverse of two numbers
|
||||
'''
|
||||
def multiplicative_inverse(e, phi):
|
||||
d = 0
|
||||
x1 = 0
|
||||
x2 = 1
|
||||
y1 = 1
|
||||
temp_phi = phi
|
||||
|
||||
while e > 0:
|
||||
temp1 = temp_phi/e
|
||||
temp2 = temp_phi - temp1 * e
|
||||
temp_phi = e
|
||||
e = temp2
|
||||
|
||||
x = x2- temp1* x1
|
||||
y = d - temp1 * y1
|
||||
|
||||
x2 = x1
|
||||
x1 = x
|
||||
d = y1
|
||||
y1 = y
|
||||
|
||||
if temp_phi == 1:
|
||||
return d + phi
|
||||
|
||||
'''
|
||||
Tests to see if a number is prime.
|
||||
'''
|
||||
def is_prime(num):
|
||||
if num == 2:
|
||||
return True
|
||||
if num < 2 or num % 2 == 0:
|
||||
return False
|
||||
for n in xrange(3, int(num**0.5)+2, 2):
|
||||
if num % n == 0:
|
||||
return False
|
||||
return True
|
||||
|
||||
def generate_keypair(p, q):
|
||||
if not (is_prime(p) and is_prime(q)):
|
||||
raise ValueError('Both numbers must be prime.')
|
||||
elif p == q:
|
||||
raise ValueError('p and q cannot be equal')
|
||||
#n = pq
|
||||
n = p * q
|
||||
|
||||
#Phi is the totient of n
|
||||
phi = (p-1) * (q-1)
|
||||
|
||||
#Choose an integer e such that e and phi(n) are coprime
|
||||
e = random.randrange(1, phi)
|
||||
|
||||
#Use Euclid's Algorithm to verify that e and phi(n) are comprime
|
||||
g = gcd(e, phi)
|
||||
while g != 1:
|
||||
e = random.randrange(1, phi)
|
||||
g = gcd(e, phi)
|
||||
|
||||
#Use Extended Euclid's Algorithm to generate the private key
|
||||
d = multiplicative_inverse(e, phi)
|
||||
|
||||
#Return public and private keypair
|
||||
#Public key is (e, n) and private key is (d, n)
|
||||
return ((e, n), (d, n))
|
||||
|
||||
def encrypt(pk, plaintext):
|
||||
#Unpack the key into it's components
|
||||
key, n = pk
|
||||
#Convert each letter in the plaintext to numbers based on the character using a^b mod m
|
||||
cipher = [(ord(char) ** key) % n for char in plaintext]
|
||||
#Return the array of bytes
|
||||
return cipher
|
||||
|
||||
def decrypt(pk, ciphertext):
|
||||
#Unpack the key into its components
|
||||
key, n = pk
|
||||
#Generate the plaintext based on the ciphertext and key using a^b mod m
|
||||
plain = [chr((char ** key) % n) for char in ciphertext]
|
||||
#Return the array of bytes as a string
|
||||
return ''.join(plain)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
'''
|
||||
Detect if the script is being run directly by the user
|
||||
'''
|
||||
print "RSA Encrypter/ Decrypter"
|
||||
p = int(raw_input("Enter a prime number (17, 19, 23, etc): "))
|
||||
q = int(raw_input("Enter another prime number (Not one you entered above): "))
|
||||
print "Generating your public/private keypairs now . . ."
|
||||
public, private = generate_keypair(p, q)
|
||||
print "Your public key is ", public ," and your private key is ", private
|
||||
message = raw_input("Enter a message to encrypt with your private key: ")
|
||||
encrypted_msg = encrypt(private, message)
|
||||
print "Your encrypted message is: "
|
||||
print ''.join(map(lambda x: str(x), encrypted_msg))
|
||||
print "Decrypting message with public key ", public ," . . ."
|
||||
print "Your message is:"
|
||||
print decrypt(public, encrypted_msg)
|
Loading…
Reference in New Issue
Block a user