mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Infinite loop was fixed. (#1105)
* Infinite loop was fixed. Removed issue of unused variables. * Update logistic_regression.py * Update logistic_regression.py * correct spacing according to PEP8
This commit is contained in:
parent
c92d06bf1f
commit
32c0418f63
@ -40,34 +40,20 @@ def logistic_reg(
|
||||
alpha,
|
||||
X,
|
||||
y,
|
||||
num_steps,
|
||||
max_iterations=70000,
|
||||
):
|
||||
converged = False
|
||||
iterations = 0
|
||||
theta = np.zeros(X.shape[1])
|
||||
|
||||
while not converged:
|
||||
for iterations in range(max_iterations):
|
||||
z = np.dot(X, theta)
|
||||
h = sigmoid_function(z)
|
||||
gradient = np.dot(X.T, h - y) / y.size
|
||||
theta = theta - alpha * gradient
|
||||
theta = theta - alpha * gradient # updating the weights
|
||||
z = np.dot(X, theta)
|
||||
h = sigmoid_function(z)
|
||||
J = cost_function(h, y)
|
||||
iterations += 1 # update iterations
|
||||
weights = np.zeros(X.shape[1])
|
||||
for step in range(num_steps):
|
||||
scores = np.dot(X, weights)
|
||||
predictions = sigmoid_function(scores)
|
||||
if step % 10000 == 0:
|
||||
print(log_likelihood(X,y,weights)) # Print log-likelihood every so often
|
||||
return weights
|
||||
|
||||
if iterations == max_iterations:
|
||||
print('Maximum iterations exceeded!')
|
||||
print('Minimal cost function J=', J)
|
||||
converged = True
|
||||
if iterations % 100 == 0:
|
||||
print(f'loss: {J} \t') # printing the loss after every 100 iterations
|
||||
return theta
|
||||
|
||||
# In[68]:
|
||||
@ -78,8 +64,8 @@ if __name__ == '__main__':
|
||||
y = (iris.target != 0) * 1
|
||||
|
||||
alpha = 0.1
|
||||
theta = logistic_reg(alpha,X,y,max_iterations=70000,num_steps=30000)
|
||||
print(theta)
|
||||
theta = logistic_reg(alpha,X,y,max_iterations=70000)
|
||||
print("theta: ",theta) # printing the theta i.e our weights vector
|
||||
|
||||
|
||||
def predict_prob(X):
|
||||
@ -105,3 +91,4 @@ if __name__ == '__main__':
|
||||
)
|
||||
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
Loading…
Reference in New Issue
Block a user