Travis CI: Add pytest --doctest-modules machine_learning (#1016)

* Travis CI: Add pytest --doctest-modules neural_network

Fixes #987
```
neural_network/perceptron.py:123: in <module>
    sample.insert(i, float(input('value: ')))
../lib/python3.7/site-packages/_pytest/capture.py:693: in read
    raise IOError("reading from stdin while output is captured")
E   OSError: reading from stdin while output is captured
-------------------------------------------------------------------------------- Captured stdout --------------------------------------------------------------------------------
('\nEpoch:\n', 399)
------------------------

value:
```

* Adding fix from #1056 -- thanks @QuantumNovice

* if __name__ == '__main__':

* pytest --ignore=virtualenv  # do not test our dependencies
This commit is contained in:
Christian Clauss 2019-08-10 22:48:00 +02:00 committed by GitHub
parent 91c3c98d2b
commit 36684db278
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 16 additions and 135 deletions

View File

@ -1,124 +0,0 @@
'''
Perceptron
w = w + N * (d(k) - y) * x(k)
Using perceptron network for oil analysis,
with Measuring of 3 parameters that represent chemical characteristics we can classify the oil, in p1 or p2
p1 = -1
p2 = 1
'''
from __future__ import print_function
import random
class Perceptron:
def __init__(self, sample, exit, learn_rate=0.01, epoch_number=1000, bias=-1):
self.sample = sample
self.exit = exit
self.learn_rate = learn_rate
self.epoch_number = epoch_number
self.bias = bias
self.number_sample = len(sample)
self.col_sample = len(sample[0])
self.weight = []
def trannig(self):
for sample in self.sample:
sample.insert(0, self.bias)
for i in range(self.col_sample):
self.weight.append(random.random())
self.weight.insert(0, self.bias)
epoch_count = 0
while True:
erro = False
for i in range(self.number_sample):
u = 0
for j in range(self.col_sample + 1):
u = u + self.weight[j] * self.sample[i][j]
y = self.sign(u)
if y != self.exit[i]:
for j in range(self.col_sample + 1):
self.weight[j] = self.weight[j] + self.learn_rate * (self.exit[i] - y) * self.sample[i][j]
erro = True
#print('Epoch: \n',epoch_count)
epoch_count = epoch_count + 1
# if you want controle the epoch or just by erro
if erro == False:
print(('\nEpoch:\n',epoch_count))
print('------------------------\n')
#if epoch_count > self.epoch_number or not erro:
break
def sort(self, sample):
sample.insert(0, self.bias)
u = 0
for i in range(self.col_sample + 1):
u = u + self.weight[i] * sample[i]
y = self.sign(u)
if y == -1:
print(('Sample: ', sample))
print('classification: P1')
else:
print(('Sample: ', sample))
print('classification: P2')
def sign(self, u):
return 1 if u >= 0 else -1
samples = [
[-0.6508, 0.1097, 4.0009],
[-1.4492, 0.8896, 4.4005],
[2.0850, 0.6876, 12.0710],
[0.2626, 1.1476, 7.7985],
[0.6418, 1.0234, 7.0427],
[0.2569, 0.6730, 8.3265],
[1.1155, 0.6043, 7.4446],
[0.0914, 0.3399, 7.0677],
[0.0121, 0.5256, 4.6316],
[-0.0429, 0.4660, 5.4323],
[0.4340, 0.6870, 8.2287],
[0.2735, 1.0287, 7.1934],
[0.4839, 0.4851, 7.4850],
[0.4089, -0.1267, 5.5019],
[1.4391, 0.1614, 8.5843],
[-0.9115, -0.1973, 2.1962],
[0.3654, 1.0475, 7.4858],
[0.2144, 0.7515, 7.1699],
[0.2013, 1.0014, 6.5489],
[0.6483, 0.2183, 5.8991],
[-0.1147, 0.2242, 7.2435],
[-0.7970, 0.8795, 3.8762],
[-1.0625, 0.6366, 2.4707],
[0.5307, 0.1285, 5.6883],
[-1.2200, 0.7777, 1.7252],
[0.3957, 0.1076, 5.6623],
[-0.1013, 0.5989, 7.1812],
[2.4482, 0.9455, 11.2095],
[2.0149, 0.6192, 10.9263],
[0.2012, 0.2611, 5.4631]
]
exit = [-1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1]
network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1)
network.trannig()
while True:
sample = []
for i in range(3):
sample.insert(i, float(input('value: ')))
network.sort(sample)

View File

@ -1,17 +1,19 @@
# Random Forest Classification # Random Forest Classification
# Importing the libraries # Importing the libraries
import os
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import pandas as pd import pandas as pd
# Importing the dataset # Importing the dataset
dataset = pd.read_csv('Social_Network_Ads.csv') script_dir = os.path.dirname(os.path.realpath(__file__))
dataset = pd.read_csv(os.path.join(script_dir, 'Social_Network_Ads.csv'))
X = dataset.iloc[:, [2, 3]].values X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values y = dataset.iloc[:, 4].values
# Splitting the dataset into the Training set and Test set # Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
# Feature Scaling # Feature Scaling

View File

@ -1,12 +1,14 @@
# Random Forest Regression # Random Forest Regression
# Importing the libraries # Importing the libraries
import os
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import pandas as pd import pandas as pd
# Importing the dataset # Importing the dataset
dataset = pd.read_csv('Position_Salaries.csv') script_dir = os.path.dirname(os.path.realpath(__file__))
dataset = pd.read_csv(os.path.join(script_dir, 'Position_Salaries.csv'))
X = dataset.iloc[:, 1:2].values X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values y = dataset.iloc[:, 2].values
@ -28,7 +30,7 @@ regressor = RandomForestRegressor(n_estimators = 10, random_state = 0)
regressor.fit(X, y) regressor.fit(X, y)
# Predicting a new result # Predicting a new result
y_pred = regressor.predict(6.5) y_pred = regressor.predict([[6.5]])
# Visualising the Random Forest Regression results (higher resolution) # Visualising the Random Forest Regression results (higher resolution)
X_grid = np.arange(min(X), max(X), 0.01) X_grid = np.arange(min(X), max(X), 0.01)

View File

@ -113,13 +113,13 @@ samples = [
exit = [-1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1] exit = [-1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1]
network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1)
network.training()
if __name__ == '__main__': if __name__ == '__main__':
network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1)
network.training()
while True: while True:
sample = [] sample = []
for i in range(3): for i in range(3):
sample.insert(i, float(input('value: ').strip())) sample.insert(i, float(input('value: ')))
network.sort(sample) network.sort(sample)

View File

@ -7,6 +7,7 @@ opencv-python
pandas pandas
pillow pillow
pytest pytest
requests
sklearn sklearn
sympy sympy
tensorflow tensorflow