mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Travis CI: Add pytest --doctest-modules machine_learning (#1016)
* Travis CI: Add pytest --doctest-modules neural_network Fixes #987 ``` neural_network/perceptron.py:123: in <module> sample.insert(i, float(input('value: '))) ../lib/python3.7/site-packages/_pytest/capture.py:693: in read raise IOError("reading from stdin while output is captured") E OSError: reading from stdin while output is captured -------------------------------------------------------------------------------- Captured stdout -------------------------------------------------------------------------------- ('\nEpoch:\n', 399) ------------------------ value: ``` * Adding fix from #1056 -- thanks @QuantumNovice * if __name__ == '__main__': * pytest --ignore=virtualenv # do not test our dependencies
This commit is contained in:
parent
91c3c98d2b
commit
36684db278
@ -1,124 +0,0 @@
|
|||||||
'''
|
|
||||||
|
|
||||||
Perceptron
|
|
||||||
w = w + N * (d(k) - y) * x(k)
|
|
||||||
|
|
||||||
Using perceptron network for oil analysis,
|
|
||||||
with Measuring of 3 parameters that represent chemical characteristics we can classify the oil, in p1 or p2
|
|
||||||
p1 = -1
|
|
||||||
p2 = 1
|
|
||||||
|
|
||||||
'''
|
|
||||||
from __future__ import print_function
|
|
||||||
|
|
||||||
import random
|
|
||||||
|
|
||||||
|
|
||||||
class Perceptron:
|
|
||||||
def __init__(self, sample, exit, learn_rate=0.01, epoch_number=1000, bias=-1):
|
|
||||||
self.sample = sample
|
|
||||||
self.exit = exit
|
|
||||||
self.learn_rate = learn_rate
|
|
||||||
self.epoch_number = epoch_number
|
|
||||||
self.bias = bias
|
|
||||||
self.number_sample = len(sample)
|
|
||||||
self.col_sample = len(sample[0])
|
|
||||||
self.weight = []
|
|
||||||
|
|
||||||
def trannig(self):
|
|
||||||
for sample in self.sample:
|
|
||||||
sample.insert(0, self.bias)
|
|
||||||
|
|
||||||
for i in range(self.col_sample):
|
|
||||||
self.weight.append(random.random())
|
|
||||||
|
|
||||||
self.weight.insert(0, self.bias)
|
|
||||||
|
|
||||||
epoch_count = 0
|
|
||||||
|
|
||||||
while True:
|
|
||||||
erro = False
|
|
||||||
for i in range(self.number_sample):
|
|
||||||
u = 0
|
|
||||||
for j in range(self.col_sample + 1):
|
|
||||||
u = u + self.weight[j] * self.sample[i][j]
|
|
||||||
y = self.sign(u)
|
|
||||||
if y != self.exit[i]:
|
|
||||||
|
|
||||||
for j in range(self.col_sample + 1):
|
|
||||||
|
|
||||||
self.weight[j] = self.weight[j] + self.learn_rate * (self.exit[i] - y) * self.sample[i][j]
|
|
||||||
erro = True
|
|
||||||
#print('Epoch: \n',epoch_count)
|
|
||||||
epoch_count = epoch_count + 1
|
|
||||||
# if you want controle the epoch or just by erro
|
|
||||||
if erro == False:
|
|
||||||
print(('\nEpoch:\n',epoch_count))
|
|
||||||
print('------------------------\n')
|
|
||||||
#if epoch_count > self.epoch_number or not erro:
|
|
||||||
break
|
|
||||||
|
|
||||||
def sort(self, sample):
|
|
||||||
sample.insert(0, self.bias)
|
|
||||||
u = 0
|
|
||||||
for i in range(self.col_sample + 1):
|
|
||||||
u = u + self.weight[i] * sample[i]
|
|
||||||
|
|
||||||
y = self.sign(u)
|
|
||||||
|
|
||||||
if y == -1:
|
|
||||||
print(('Sample: ', sample))
|
|
||||||
print('classification: P1')
|
|
||||||
else:
|
|
||||||
print(('Sample: ', sample))
|
|
||||||
print('classification: P2')
|
|
||||||
|
|
||||||
def sign(self, u):
|
|
||||||
return 1 if u >= 0 else -1
|
|
||||||
|
|
||||||
|
|
||||||
samples = [
|
|
||||||
[-0.6508, 0.1097, 4.0009],
|
|
||||||
[-1.4492, 0.8896, 4.4005],
|
|
||||||
[2.0850, 0.6876, 12.0710],
|
|
||||||
[0.2626, 1.1476, 7.7985],
|
|
||||||
[0.6418, 1.0234, 7.0427],
|
|
||||||
[0.2569, 0.6730, 8.3265],
|
|
||||||
[1.1155, 0.6043, 7.4446],
|
|
||||||
[0.0914, 0.3399, 7.0677],
|
|
||||||
[0.0121, 0.5256, 4.6316],
|
|
||||||
[-0.0429, 0.4660, 5.4323],
|
|
||||||
[0.4340, 0.6870, 8.2287],
|
|
||||||
[0.2735, 1.0287, 7.1934],
|
|
||||||
[0.4839, 0.4851, 7.4850],
|
|
||||||
[0.4089, -0.1267, 5.5019],
|
|
||||||
[1.4391, 0.1614, 8.5843],
|
|
||||||
[-0.9115, -0.1973, 2.1962],
|
|
||||||
[0.3654, 1.0475, 7.4858],
|
|
||||||
[0.2144, 0.7515, 7.1699],
|
|
||||||
[0.2013, 1.0014, 6.5489],
|
|
||||||
[0.6483, 0.2183, 5.8991],
|
|
||||||
[-0.1147, 0.2242, 7.2435],
|
|
||||||
[-0.7970, 0.8795, 3.8762],
|
|
||||||
[-1.0625, 0.6366, 2.4707],
|
|
||||||
[0.5307, 0.1285, 5.6883],
|
|
||||||
[-1.2200, 0.7777, 1.7252],
|
|
||||||
[0.3957, 0.1076, 5.6623],
|
|
||||||
[-0.1013, 0.5989, 7.1812],
|
|
||||||
[2.4482, 0.9455, 11.2095],
|
|
||||||
[2.0149, 0.6192, 10.9263],
|
|
||||||
[0.2012, 0.2611, 5.4631]
|
|
||||||
|
|
||||||
]
|
|
||||||
|
|
||||||
exit = [-1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1]
|
|
||||||
|
|
||||||
network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1)
|
|
||||||
|
|
||||||
network.trannig()
|
|
||||||
|
|
||||||
while True:
|
|
||||||
sample = []
|
|
||||||
for i in range(3):
|
|
||||||
sample.insert(i, float(input('value: ')))
|
|
||||||
network.sort(sample)
|
|
@ -1,17 +1,19 @@
|
|||||||
# Random Forest Classification
|
# Random Forest Classification
|
||||||
|
|
||||||
# Importing the libraries
|
# Importing the libraries
|
||||||
|
import os
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
# Importing the dataset
|
# Importing the dataset
|
||||||
dataset = pd.read_csv('Social_Network_Ads.csv')
|
script_dir = os.path.dirname(os.path.realpath(__file__))
|
||||||
|
dataset = pd.read_csv(os.path.join(script_dir, 'Social_Network_Ads.csv'))
|
||||||
X = dataset.iloc[:, [2, 3]].values
|
X = dataset.iloc[:, [2, 3]].values
|
||||||
y = dataset.iloc[:, 4].values
|
y = dataset.iloc[:, 4].values
|
||||||
|
|
||||||
# Splitting the dataset into the Training set and Test set
|
# Splitting the dataset into the Training set and Test set
|
||||||
from sklearn.cross_validation import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
|
||||||
|
|
||||||
# Feature Scaling
|
# Feature Scaling
|
||||||
|
@ -1,12 +1,14 @@
|
|||||||
# Random Forest Regression
|
# Random Forest Regression
|
||||||
|
|
||||||
# Importing the libraries
|
# Importing the libraries
|
||||||
|
import os
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
# Importing the dataset
|
# Importing the dataset
|
||||||
dataset = pd.read_csv('Position_Salaries.csv')
|
script_dir = os.path.dirname(os.path.realpath(__file__))
|
||||||
|
dataset = pd.read_csv(os.path.join(script_dir, 'Position_Salaries.csv'))
|
||||||
X = dataset.iloc[:, 1:2].values
|
X = dataset.iloc[:, 1:2].values
|
||||||
y = dataset.iloc[:, 2].values
|
y = dataset.iloc[:, 2].values
|
||||||
|
|
||||||
@ -28,7 +30,7 @@ regressor = RandomForestRegressor(n_estimators = 10, random_state = 0)
|
|||||||
regressor.fit(X, y)
|
regressor.fit(X, y)
|
||||||
|
|
||||||
# Predicting a new result
|
# Predicting a new result
|
||||||
y_pred = regressor.predict(6.5)
|
y_pred = regressor.predict([[6.5]])
|
||||||
|
|
||||||
# Visualising the Random Forest Regression results (higher resolution)
|
# Visualising the Random Forest Regression results (higher resolution)
|
||||||
X_grid = np.arange(min(X), max(X), 0.01)
|
X_grid = np.arange(min(X), max(X), 0.01)
|
||||||
|
@ -113,13 +113,13 @@ samples = [
|
|||||||
|
|
||||||
exit = [-1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1]
|
exit = [-1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1]
|
||||||
|
|
||||||
|
network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1)
|
||||||
|
|
||||||
|
network.training()
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1)
|
|
||||||
|
|
||||||
network.training()
|
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
sample = []
|
sample = []
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
sample.insert(i, float(input('value: ').strip()))
|
sample.insert(i, float(input('value: ')))
|
||||||
network.sort(sample)
|
network.sort(sample)
|
||||||
|
@ -7,6 +7,7 @@ opencv-python
|
|||||||
pandas
|
pandas
|
||||||
pillow
|
pillow
|
||||||
pytest
|
pytest
|
||||||
|
requests
|
||||||
sklearn
|
sklearn
|
||||||
sympy
|
sympy
|
||||||
tensorflow
|
tensorflow
|
||||||
|
Loading…
Reference in New Issue
Block a user