mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Add gabor filter (#5289)
* add gabor_filter.py * Update gabor_filter.py * update gabor_filter.py * add doctest * change import order * Update digital_image_processing/filters/gabor_filter.py Co-authored-by: John Law <johnlaw.po@gmail.com> * Update gabor_filter.py * fix gabor filter calculation Co-authored-by: John Law <johnlaw.po@gmail.com>
This commit is contained in:
parent
5910c3aa78
commit
424c200847
85
digital_image_processing/filters/gabor_filter.py
Normal file
85
digital_image_processing/filters/gabor_filter.py
Normal file
@ -0,0 +1,85 @@
|
||||
# Implementation of the Gaborfilter
|
||||
# https://en.wikipedia.org/wiki/Gabor_filter
|
||||
import numpy as np
|
||||
from cv2 import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filter2D, imread, imshow, waitKey
|
||||
|
||||
|
||||
def gabor_filter_kernel(
|
||||
ksize: int, sigma: int, theta: int, lambd: int, gamma: int, psi: int
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
:param ksize: The kernelsize of the convolutional filter (ksize x ksize)
|
||||
:param sigma: standard deviation of the gaussian bell curve
|
||||
:param theta: The orientation of the normal to the parallel stripes
|
||||
of Gabor function.
|
||||
:param lambd: Wavelength of the sinusoidal component.
|
||||
:param gamma: The spatial aspect ratio and specifies the ellipticity
|
||||
of the support of Gabor function.
|
||||
:param psi: The phase offset of the sinusoidal function.
|
||||
|
||||
>>> gabor_filter_kernel(3, 8, 0, 10, 0, 0).tolist()
|
||||
[[0.8027212023735046, 1.0, 0.8027212023735046], [0.8027212023735046, 1.0, \
|
||||
0.8027212023735046], [0.8027212023735046, 1.0, 0.8027212023735046]]
|
||||
|
||||
"""
|
||||
|
||||
# prepare kernel
|
||||
# the kernel size have to be odd
|
||||
if (ksize % 2) == 0:
|
||||
ksize = ksize + 1
|
||||
gabor = np.zeros((ksize, ksize), dtype=np.float32)
|
||||
|
||||
# each value
|
||||
for y in range(ksize):
|
||||
for x in range(ksize):
|
||||
# distance from center
|
||||
px = x - ksize // 2
|
||||
py = y - ksize // 2
|
||||
|
||||
# degree to radiant
|
||||
_theta = theta / 180 * np.pi
|
||||
cos_theta = np.cos(_theta)
|
||||
sin_theta = np.sin(_theta)
|
||||
|
||||
# get kernel x
|
||||
_x = cos_theta * px + sin_theta * py
|
||||
|
||||
# get kernel y
|
||||
_y = -sin_theta * px + cos_theta * py
|
||||
|
||||
# fill kernel
|
||||
gabor[y, x] = np.exp(
|
||||
-(_x ** 2 + gamma ** 2 * _y ** 2) / (2 * sigma ** 2)
|
||||
) * np.cos(2 * np.pi * _x / lambd + psi)
|
||||
|
||||
return gabor
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
# read original image
|
||||
img = imread("../image_data/lena.jpg")
|
||||
# turn image in gray scale value
|
||||
gray = cvtColor(img, COLOR_BGR2GRAY)
|
||||
|
||||
# Apply multiple Kernel to detect edges
|
||||
out = np.zeros(gray.shape[:2])
|
||||
for theta in [0, 30, 60, 90, 120, 150]:
|
||||
"""
|
||||
ksize = 10
|
||||
sigma = 8
|
||||
lambd = 10
|
||||
gamma = 0
|
||||
psi = 0
|
||||
"""
|
||||
kernel_10 = gabor_filter_kernel(10, 8, theta, 10, 0, 0)
|
||||
out += filter2D(gray, CV_8UC3, kernel_10)
|
||||
out = out / out.max() * 255
|
||||
out = out.astype(np.uint8)
|
||||
|
||||
imshow("Original", gray)
|
||||
imshow("Gabor filter with 20x20 mask and 6 directions", out)
|
||||
|
||||
waitKey(0)
|
Loading…
Reference in New Issue
Block a user