mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
Add doctest to maths/sieve_of_eratosthenes.py and remove other/finding_primes.py (#1078)
Both of the two files implemented sieve of eratosthenes. However, there was a bug in other/finding_primes.py, and the time complexity was larger than the other. Therefore, remove other/finding_primes.py and add doctest tomaths/sieve_of_eratosthenes.py.
This commit is contained in:
parent
c27bd5144f
commit
46bc6738d7
@ -1,19 +1,53 @@
|
||||
"""Sieve of Eratosthones."""
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
Sieve of Eratosthones
|
||||
|
||||
The sieve of Eratosthenes is an algorithm used to find prime numbers, less than or equal to a given value.
|
||||
Illustration: https://upload.wikimedia.org/wikipedia/commons/b/b9/Sieve_of_Eratosthenes_animation.gif
|
||||
Reference: https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
|
||||
|
||||
doctest provider: Bruno Simas Hadlich (https://github.com/brunohadlich)
|
||||
Also thanks Dmitry (https://github.com/LizardWizzard) for finding the problem
|
||||
"""
|
||||
|
||||
|
||||
import math
|
||||
|
||||
|
||||
def sieve(n):
|
||||
"""Sieve of Eratosthones."""
|
||||
"""
|
||||
Returns a list with all prime numbers up to n.
|
||||
|
||||
>>> sieve(50)
|
||||
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
|
||||
>>> sieve(25)
|
||||
[2, 3, 5, 7, 11, 13, 17, 19, 23]
|
||||
>>> sieve(10)
|
||||
[2, 3, 5, 7]
|
||||
>>> sieve(9)
|
||||
[2, 3, 5, 7]
|
||||
>>> sieve(2)
|
||||
[2]
|
||||
>>> sieve(1)
|
||||
[]
|
||||
"""
|
||||
|
||||
l = [True] * (n + 1)
|
||||
prime = []
|
||||
start = 2
|
||||
end = int(math.sqrt(n))
|
||||
|
||||
while start <= end:
|
||||
# If start is a prime
|
||||
if l[start] is True:
|
||||
prime.append(start)
|
||||
|
||||
# Set multiples of start be False
|
||||
for i in range(start * start, n + 1, start):
|
||||
if l[i] is True:
|
||||
l[i] = False
|
||||
|
||||
start += 1
|
||||
|
||||
for j in range(end + 1, n + 1):
|
||||
|
@ -1,21 +0,0 @@
|
||||
'''
|
||||
-The sieve of Eratosthenes is an algorithm used to find prime numbers, less than or equal to a given value.
|
||||
-Illustration: https://upload.wikimedia.org/wikipedia/commons/b/b9/Sieve_of_Eratosthenes_animation.gif
|
||||
'''
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
from math import sqrt
|
||||
def SOE(n):
|
||||
check = round(sqrt(n)) #Need not check for multiples past the square root of n
|
||||
|
||||
sieve = [False if i <2 else True for i in range(n+1)] #Set every index to False except for index 0 and 1
|
||||
|
||||
for i in range(2, check):
|
||||
if(sieve[i] == True): #If i is a prime
|
||||
for j in range(i+i, n+1, i): #Step through the list in increments of i(the multiples of the prime)
|
||||
sieve[j] = False #Sets every multiple of i to False
|
||||
|
||||
for i in range(n+1):
|
||||
if(sieve[i] == True):
|
||||
print(i, end=" ")
|
Loading…
Reference in New Issue
Block a user